LETTER
Synthetic Studies on Pactamycin
435
(4) Duchamp, D. J. American Crystallographic Association
Winter Meeting, Albuquerque, N. M. 1972, Abstracts, p. 23.
(5) Adama, E. S.; Rinehart, K. L. J. Antibiot. 1994, 47, 1456.
(6) Cohen, L. B.; Goldberg, I. H.; Herner, A. E. Biochemistry
1969, 8, 1327.
(7) The crystal structure of the complex of pactamycin with a
ribosomal 30S subunit was reported. See: (a) Brodersen, D.
E.; Clemons, W. M. Jr.; Carter, A. P.; Morgan-Warren, R. J.;
Wimberly, B. T.; Ramakrishnan, V. Cell 2000, 103, 1143.
(b) Dinos, G.; Wilson, D. N.; Teraoka, Y.; Szaflarski, W.;
Fucini, P.; Kalpaxis, D.; Nierhaus, K. H. Mol. Cell 2004, 13,
113.
(8) For reviews of Pauson–Khand reaction, see: (a) Pauson, P.
L. Tetrahedron 1985, 41, 5855. (b) Shore, N. E. Org. React.
1991, 40, 1.
(9) For reviews of the Overman rearrangement, see:
(a) Overman, L. E. Acc. Chem. Res. 1980, 13, 218.
(b) Ritter, K. Stereoselective Synthesis, In Houben-Weyl,
Vol. E21; Helmchen, G.; Hoffmann, R. W.; Mulzer, J.;
Schaumann, E., Eds.; Thieme: Stuttgart, 1996, 5677.
(c) Sato, H.; Oishi, T.; Chida, N. J. Synth. Org. Jpn. 2004,
62, 693.
With the precursors for the cyclization in hand, we
examined intramolecular Pauson–Khand reaction
(Scheme 5).8,21 Enyne 16a was treated with Co2(CO)8 to
give the corresponding acetylene–cobalt complex, which
was heated in MeCN at 70 °C to afford an inseparable
mixture. Fortunately, when the crude material was treated
with Ac2O and pyridine at room temperature, the major
product was transformed to diacetate 1922 as a single dia-
stereomer in 55% yield from 16a after silica gel column
chromatography.23 The configurations of the C-3 and C-5
positions of 19 were determined by the observation of the
NOESY correlations as shown in Scheme 5. Interestingly,
the diacetate 16b and the bis-TMS ether 16c and the dia-
stereomeric isomer 17 did not undergo the Pauson–Khand
reaction under the same conditions.
O
TMS
H
HO
TMS
RO
c, d
e
(10) Tadano, K.-I.; Idogaki, Y.; Yamada, H.; Suami, T. J. Org.
Chem. 1987, 52, 1201.
BnN
BnN
OR
OH
O
O
O
O
(11) We have synthesized 6 according to the procedure described
by Tadano and co-workers except for oxidation of
diacetone-D-glucose(7); TPAP was employed instead of
PCC because of environmental consideration. See: Ley, S.
V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis
1994, 639.
16a R = H
16b R = Ac
16c R = TMS
18
a
b
NOESY
Ph
O
O
H
H
H
N
H
O
H
AcO
BnN
3
TMS
(12) Nishikawa, T.; Asai, M.; Ohyabu, N.; Isobe, M. J. Org.
Chem. 1998, 63, 188.
H3C
O
Ac
5
H
OAc
TMS
(13) Spectral data of 6: colorless crystalline solids, mp 116–
OAc
118 °C; [a]D26 +41.4 (c 1.05, CHCl3). IR (NaCl, film):
O
O
NOESY
O
19
nmax = 3312, 2990, 1720, 1507, 1375, 1248, 1216, 1164,
1081, 1007, 872, 844, 822 cm–1. 1H NMR (300 MHz,
CDCl3): d = 1.35, 1.37, 1.49, 1.57 (each 3 H, s, acetonide),
3.96 (1 H, t, J = 8 Hz, H-6), 4.06 (1 H, dd, J = 8.0, 6.5 Hz,
H6), 4.18 (1 H, d, J = 3.5 Hz, H-4), 4.56 (1 H, ddd, J = 8.0,
6.5, 3.5 Hz, H-5), 5.28 (1 H, d, J = 3.5 Hz, H-2), 5.43 (1 H,
d, J = 11.0 Hz, CH=CHH), 5.44 (1 H, d, J = 17.5 Hz,
CH=CHH), 5.92 (1 H, d, J = 3.5 Hz, H-1), 6.04 (1 H, dd,
J = 17.5, 11.0 Hz, CH=CH2), 8.54 (1 H, s, NH) ppm.
13C NMR (75 MHz, CDCl3): d = 25.8, 26.0, 26.5, 26.6, 66.0,
69.8, 75.4, 78.5, 83.7, 92.9, 103.9, 110.5, 112.4, 117.5,
131.0, 161.5 ppm. Anal. Calcd for C16H22NO6Cl3: C, 44.62;
H, 5.15; N, 3.25. Found: C, 44.63; H, 5.12; N, 3.23.
(14) (a) Gonda, J.; Bednárikova, M. Tetrahedron Lett. 1997, 38,
5569. (b) Eguchi, T.; Kakinuma, K. J. Synth. Org. Jpn. 1997,
55, 814.
Scheme 5 Reagents and conditions: a) Ac2O, pyridine (80%);
b) TMSOTf, i-Pr2NEt, CH2Cl2 (90%); c) Co2(CO)8, CH2Cl2, r.t.;
d) MeCN, 70 °C; e) Ac2O, pyridine, r.t. (55% in 3 steps).
In summary, tricyclic compound 19 including all the car-
bon atoms for the core cyclopentane of pactamycin has
been synthesized from diacetone-D-glucose. The product
also possesses suitable structure for installation of the re-
maining functionalities. Further studies toward the total
synthesis are in progress in this laboratory.
Acknowledgment
(15) Iio, H.; Isobe, M.; Kawai, T.; Goto, T. Tetrahedron 1979, 35,
941.
(16) All attempts to synthesize the desired diastereomer 10 failed.
(17) Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1981, 103,
5454.
This work was financially supported by PRESTO of Japan Science
and technology Agency (JST), a Grant-in-Aid for Specially Promo-
ted Research (16002007) and the 21st COE grant from MEXT.
(18) Oishi, T.; Ando, K.; Inomiya, K.; Sato, H.; Iida, M.; Chida,
N. Bull. Chem. Soc. Jpn. 2002, 75, 1927.
References
(1) (a) Bhuyan, B. K.; Dietz, A.; Smith, C. G. Antimicrob.
Agents Chemother. 1962, 184. (b) Argoudelis, A. D.;
Jahnke, H. K.; Fox, J. A. Antimicrob. Agents Chemother.
1962, 191.
(19) Tipson, R. S.; Cohen, A. Carbohydr. Res. 1965, 1, 338.
(20) Spectral data of 16a: colorless oil; [a]D26 +88.8 (c 0.16,
CHCl3). IR (NaCl, film): nmax = 3413, 2960, 2175, 1724,
1414, 1250, 1075, 845 cm–1. 1H NMR (300 MHz, CDCl3):
d = 0.13 (9 H, s, TMS), 1.52 (3 H, d, J = 7.0 Hz, CH3), 2.49
(1 H, br, -OH), 2.85 (1 H, br, -OH), 4.58 (2 H, s, CH2-Ph),
4.68 (1 H, br d, J = 5.0 Hz, CH2=CH-CH-OH), 4.94 (1 H, s,
C≡C-CH-OH), 4.97 (1 H, q, J = 7.0 Hz, CHCH3), 5.37 (1 H,
dt, J = 10.5, 1.5 Hz, CHAHB=CH), 5.52 (1 H, dt, J = 17.0, 1.5
Hz, CHAHB=CH), 5.99 (1 H, ddd, J = 17.0, 10.5, 5.0 Hz,
(2) Weller, D. D.; Rinehart, K. L. J. Am. Chem. Soc. 1978, 100,
6757.
(3) Wiley, P. F.; Jahnke, H. K.; MacKellar, F.; Kelly, R. B.;
Argoudelis, A. J. Org. Chem. 1970, 35, 1420.
Synlett 2005, No. 3, 433–436 © Thieme Stuttgart · New York