Fluorescence Quenching of Naphthalene-Based Dyads
J. Phys. Chem. A, Vol. 109, No. 12, 2005 2717
(18) Jacques, P.; Allonas, X.; Suppan, P.; von Raumer, M. J. Photochem.
Photobiol., A 1996, 101, 183-184.
shown above (cf. Chart 2), NPX is a better electron acceptor in
the (S,S) dyad, NAP must be a worse acceptor in this
diastereomer compared with the (S,R) combination. Therefore,
the diastereodifferentiation for NAP is opposite to that for NPX.
Generally, NAP is a worse electron acceptor in the dyads
compared with the model NAP-M, as documented by the smaller
quenching rate constants in the dyads (0.5-1.1 × 109 M-1 s-1
versus 6.5 × 109 M-1 s-1).
(19) von Raumer, M.; Suppan, P.; Haselbach, E. HelV. Chim. Acta 1997,
80, 719-724.
(20) Pischel, U.; Zhang, X.; Hellrung, B.; Haselbach, E.; Muller, P.-A.;
Nau, W. M. J. Am. Chem. Soc. 2000, 122, 2027-2034.
(21) Pischel, U.; Nau, W. M. J. Am. Chem. Soc. 2001, 123, 9727-
9737.
(22) Griller, D.; Howard, J. A.; Marriott, P. R.; Scaiano, J. C. J. Am.
Chem. Soc. 1981, 103, 619-623.
(23) Malatesta, V.; Scaiano, J. C. J. Org. Chem. 1982, 47, 1455-1459.
(24) Nau, W. M.; Cozens, F. L.; Scaiano, J. C. J. Am. Chem. Soc. 1996,
118, 2275-2282.
(25) Wagner, P. J.; Truman, R. J.; Puchalski, A. E.; Wake, R. J. Am.
Chem. Soc. 1986, 108, 7727-7738.
(26) Burget, D.; Jacques, P.; Vauthey, E.; Suppan, P.; Haselbach, E. J.
Chem. Soc., Faraday Trans. 1994, 90, 2481-2487.
(27) Pischel, U.; Nau, W. M. J. Phys. Org. Chem. 2000, 13, 640-647.
(28) Coenjarts, C.; Scaiano, J. C. J. Am. Chem. Soc. 2000, 122, 3635-
3641.
(29) Miranda, M. A.; Lahoz, A.; Mart´ınez-Ma´nez, R.; Bosca´, F.; Castell,
J. V.; Pe´rez-Prieto, J. J. Am. Chem. Soc. 1999, 121, 11569-11570.
(30) Miranda, M. A.; Lahoz, A.; Bosca´, F.; Metni, M. R.; Abdelouahab,
F. B.; Castell, J. V.; Pe´rez-Prieto, J. J. Chem. Soc., Chem. Commun. 2000,
2257-2258.
(31) Miranda, M. A.; Mart´ınez, L. A.; Samadi, A.; Bosca´, F.; Morera,
I. M. J. Chem. Soc., Chem. Commun. 2002, 280-281.
(32) Pischel, U.; Abad, S.; Domingo, L. R.; Bosca´, F.; Miranda, M. A.
Angew. Chem., Int. Ed. 2003, 42, 2531-2534.
(33) Pischel, U.; Abad, S.; Miranda, M. A. J. Chem. Soc., Chem.
Commun. 2003, 1088-1089.
Conclusions
In essence, we have demonstrated wavelength-dependent
stereodifferentiation in the photophysical processes of novel
bichromophoric and diastereomeric naphthalene dyads. While
upon excitation at 325 nm the light energy remains in the
naproxen-derived moiety (NPX), at 290 nm efficient singlet-
singlet energy transfer (ΦSSET of about 97%) from the naph-
thalene-derived chromophore NAP to NPX dominates. Inter-
molecular quenching experiments of dyad fluorescence by
triethylamine as the electron donor have been performed. The
role of exciplexes in the quenching mechanism has been
established. For this process a pronounced diastereodifferen-
tiation has been observed. Based on thermodynamic consider-
ations and the presence of typical exciplex emission, we were
able to conclude on the alteration of the electron acceptor
properties of the naphthalene derivatives in the dyads. This effect
is dependent on the electronic interaction and, therefore, on the
configuration-dependent interaction between both chromophores.
(34) Bosca´, F.; Andreu, I.; Morera, I. M.; Samadi, A.; Miranda, M. A.
J. Chem. Soc., Chem. Commun. 2003, 1592-1593.
(35) Jime´nez, M. C.; Stiriba, S.-E.; Tormos, R.; Pe´rez-Prieto, J.; Miranda,
M. A. Photochem. Photobiol. Sci. 2004, 3, 36-38.
(36) Pe´rez-Prieto, J.; Lahoz, A.; Bosca´, F.; Mart´ınez-Ma´nez, R.; Miranda,
M. A. J. Org. Chem. 2004, 69, 374-381.
Acknowledgment. The authors thank the Generalitat Va-
lenciana (Grupos 03/082) and the MCYT (Grant BQU 2001-
2725 and doctoral fellowship to S.A.) for financial support. The
Deutsche Forschungsgemeinschaft (DFG) and the Universidad
Polite´cnica de Valencia are gratefully acknowledged for research
fellowships for U.P.
(37) Ibemesi, J. A.; El-Bayoumi, M. A.; Kinsinger, J. B. Chem. Phys.
Lett. 1978, 53, 270-272.
(38) Irie, M.; Yorozu, T.; Hayashi, K. J. Am. Chem. Soc. 1978, 100,
2236-2237.
(39) Van, S.-P.; Hammond, G. S. J. Am. Chem. Soc. 1978, 100, 3895-
3902.
(40) Meeus, F.; Van der Auweraer, M.; De Schryver, F. C. J. Am. Chem.
Soc. 1980, 102, 4017-4024.
Supporting Information Available: A table with fluores-
cence quantum yields and lifetimes of dyads and model
compounds in aerated n-hexane, a table with quenching data
of dyads and model compounds by triethylamine in aerated
n-hexane, 1H and 13C NMR spectra of dyads and model
compounds, and AM1 optimized folded conformers of the
dyads. This material is available free of charge via the Internet
(41) Yorozu, T.; Hayashi, K.; Irie, M. J. Am. Chem. Soc. 1981, 103,
5480-5484.
(42) Avnir, D.; Wellner, E.; Ottolenghi, M. J. Am. Chem. Soc. 1989,
111, 2001-2003.
(43) Sakurai, T.; Miyoshi, K.; Obitsu, M.; Inoue, H. Ber. Bunsen-Ges.
Phys. Chem. 1996, 100, 46-54.
(44) Pina, F.; Lima, J. C.; Lodeiro, C.; Seixas de Melo, J.; D´ıaz, P.;
Albelda, M. T.; Garc´ıa-Espan˜a, E. J. Phys. Chem. A 2002, 106, 8207-
8212.
(45) Bosca´, F.; Marin, M. L.; Miranda, M. A. Photochem. Photobiol.
2001, 74, 637-655.
References and Notes
(46) Becker, H. G. O. Einfu¨hrung in die Photochemie; Deutscher Verlag
der Wissenschaften: Berlin, 1991.
(1) Turro, N. J.; Ramamurthy, V.; Cherry, W.; Farneth, W. Chem. ReV.
1978, 78, 125-145.
(47) Martinez, L. J.; Scaiano, J. C. Photochem. Photobiol. 1998, 68,
646-651.
(2) Dauben, W. G.; Cogen, J. M.; Behar, V.; Schultz, A. G.; Geiss,
W.; Taveras, A. G. Tetrahedron Lett. 1992, 33, 1713-1716.
(3) Dauben, W. G.; Hecht, S. J. Org. Chem. 1998, 63, 6102-6107.
(4) Bochet, C. G. Angew. Chem., Int. Ed. 2001, 40, 2071-2073.
(5) Blanc, A.; Bochet, C. G. J. Org. Chem. 2002, 67, 5567-5577.
(6) Jacobs, H. J. C.; Havinga, E. AdV. Photochem. 1979, 11, 305-
373.
(48) Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photochem-
istry, 2nd ed.; Marcel Dekker: New York, 1993.
(49) Lentz, P.; Blume, H.; Schulte-Frohlinde, D. Ber. Bunsen-Ges. Phys.
Chem. 1970, 74, 484-488.
(50) Weller, A. Z. Phys. Chem. Neue Folge 1982, 133, 93-98.
(51) For the calculation of the energetics of radical ion pair or exciplex
formation with eqs 5 and 6, we used the following electrochemical potentials
(versus SCE and in acetonitrile or dimethylformamide): Eox (TEA) ) 0.88
V (cf. ref 53), Ered (2-methoxynaphthalene) ) -2.60 V, and Ered (1-
methylnaphthalene) ) -2.58 V (cf. ref 48). As excitation energies, the
values for the respective model compounds NPX-M and NAP-M were
used: E0-0 ) 3.70 eV (NPX-M) and 3.93 eV (NAP-M); this work. The
dielectricity constant ꢀ for n-hexane was taken as 1.9 (cf.: Reichardt, C.
SolVents and solVent effects in organic chemistry, 2nd ed.; VCH: Weinheim,
1990).
(7) Mazzucato, U.; Momicchioli, F. Chem. ReV. 1991, 91, 1679-1719.
(8) Saltiel, J.; Zhang, Y.; Sears, D. F., Jr. J. Am. Chem. Soc. 1997,
119, 11202-11210.
(9) Becker, R. S.; Pelliccioli, A. P.; Romani, A.; Favaro, G. J. Am.
Chem. Soc. 1999, 121, 2104-2109.
(10) Saltiel, J.; Cires, L.; Turek, A. M. J. Am. Chem. Soc. 2003, 125,
2866-2867.
(11) Inoue, Y. Chem. ReV. 1992, 92, 741-770.
(12) Inoue, Y.; Wada, T.; Asaoka, S.; Sato, H.; Pete, J.-P. J. Chem.
Soc., Chem. Commun. 2000, 251-259.
(52) Chandross, E. A.; Thomas, H. T. Chem. Phys. Lett. 1971, 9, 393-
396.
(13) Saltiel, J.; Choi, J.-O.; Sears, D. F., Jr.; Eaker, D. W.; O’Shea, K.
E.; Garcia, I. J. Am. Chem. Soc. 1996, 118, 7478-7485.
(14) Kavarnos, G. J.; Turro, N. J. Chem. ReV. 1986, 86, 401-449.
(15) Scaiano, J. C. J. Photochem. 1973, 2, 81-118.
(16) Nau, W. M. Ber. Bunsen-Ges. Phys. Chem. 1998, 102, 476-485.
(17) Speiser, S. Chem. ReV. 1996, 96, 1953-1976.
(53) Jacques, P.; Burget, D.; Allonas, X. New J. Chem. 1996, 20, 933-
937.
(54) Noteworthy, although exciplex-induced quenching by DABCO is
possible for both model compounds (∆Gex ) -0.06 and -0.29 eV for
NPX-M and NAP-M, respectively), electron transfer is still endergonic in
both cases: ∆Get ) 0.82 and 0.57 eV for NPX-M and NAP-M, respectively.