rings, this coupling has not been used to synthesize 6,6-
annulated piperidines until now.
Following transformation to epoxide 9 and second ring-
opening with vinylmagnesium bromide gave (R)-hept-1-en-
4-ol (10) in 91% overall yield. Comparison of its optical
rotation with published data14 corresponded to an enantio-
meric excess of 98%.
After formation of the corresponding mesylate 11, sub-
stitution with sodium azide was carried out to yield 12.
Following reduction with LiAlH4 and in situ protection of
the corresponding amine intermediate with ortho-nitroben-
zenesulfonyl chloride (o-NsCl) gave 6 in 89% yield. The
o-Ns-group was chosen due to its electron-withdrawing
effect, advantageous for subsequent Mitsunobu reaction15 and
for the planned RRM process. Subjection of 6 to chiral HPLC
corresponded to an enantiomeric excess of 99%, which
confirms complete inversion of the configuration in the
transformation of 11 to 12.
For synthesis of (S)-cyclohex-2-enol (5), the asymmetric
CBS reduction of ketones, published first by Corey et al.,16
was employed. As a prochiral ketone, we chose 2-bromo-
cyclohex-2-en-1-one (13),17 which was already successfully
applied to synthesize ent-5.18 Following the literature pro-
cedure, (R)-Me-CBS 16 was initially used as a chiral catalyst
for the asymmetric reduction to yield 5 with only 70% ee.
Reduction of the reaction temperature to -20 °C improved
the enantiomeric excess to 83%. Lower temperatures,
however, led to a decreased conversion, and the published
96% ee could not be reproduced (Table 1).17 Due to these
As a second key step, the concept of ring-rearrangement
metathesis (RRM),9 already established in natural product
synthesis,10 was used to construct the 2,6-disubstituted
tetrahydropyridine derivative 3. In recent work, we reported
the enantioselective synthesis of R,R′-disubstituted pip-
eridines via RRM of easily available carbocyclic secondary
amines.11 Since complete transfer of chirality was observed
in this step, the enantiopure secondary amine 4 was chosen
as a precursor for the planned RRM process. 4 was
synthesized by Mitsunobu reaction12 of the easily accessible
compounds 5 and 6. In conclusion, the desired decahydro-
quinoline 1 was constructed in only a few steps through our
proposed strategy.
For synthesis of ent-6, we chose commercially available
(R)-epichlorohydrin (7) as a starting material. Double copper-
catalyzed epoxide ring-opening with Grignard reagents
should lead to the corresponding enantiopure alcohol 10.13
The first ring-opening was carried out with ethylmagnesium
Scheme 2. Synthetic Route to 6
Table 1. Application of CBS Reduction for the Synthesis of 5
bromide to afford 8 in quantitative yield (Scheme 2).
(3) Warnick, J. E.; Jessup, P. J.; Overman, L. E.; Eldefrawi, M. E.; Nimit,
Y.; Daly, J. W.; Albuquerque, E. X. Mol. Pharmacol. 1982, 22, 565.
(4) (a) Isolation: Daly, J. W.; Tokuyama, T.; Habermehl, G.; Karle, I.
L.; Witkop, B. Liebigs Ann. Chem. 1969, 729, 198. (b) Absolute config-
uration: Oppolzer, W.; Flashkamp, E. HelV. Chim. Acta 1977, 60, 204.
(5) Spande, T. F.; Poonam, J.; Garaffo, H. M.; Pannell, L. K.; Yeh, H.
J. C.; Daly, J. W. J. Nat. Prod. 1999, 62, 5.
(6) (a) Garaffo, H. M.; Simon, L. D.; Daly, J. W.; Spande, T. F.; Jones,
T. H. Tetrahedron 1994, 50, 11329. (b) Abe, K.; Tsugoshi, T.; Nakamura,
N. Bull. Chem. Soc. Jpn. 1984, 57, 3351.
(7) (a) Rousset, C. J.; Swanson, D. R.; Lamaty, F.; Negishi, E.
Tetrahedron Lett. 1989, 38, 5105. (b) Negishi, E.; Cederbaum, F. E.;
Takahashi, T. Tetrahedron Lett. 1986, 25, 2829. (c) Negishi, E.; Swanson,
D. R.; Cederbaum, F. E.; Takahashi, T. Tetrahedron Lett. 1987, 9, 917. (d)
Nugent, W. A.; Taber, D. F. J. Am. Chem. Soc. 1989, 111, 6435. (e) Lim,
J. A., Louey; J. P.; Taber, D. F. Tetrahedron Lett. 1993, 34, 2243.
(8) Mori, M.; Uesaka, N.; Shibasaki, M. J. Org. Chem. 1992, 13, 3519.
(9) (a) Zuercher, W. J.; Hashimoto, M.; Grubbs, R. H. J. Am. Chem.
Soc. 1996, 118, 6634. (b) Hoveyda, A. H.; Schrock, R. R.; Weatherhead,
G. S.; Ford, J. G.; Alexanian, E. J. J. Am. Chem. Soc. 2000, 122, 1828. (c)
Choi, T.-L.; Grubbs, R. H. Chem. Commun. 2001, 2648.
entry
catalyst
temp (°C)a
conversion (%)
ee (%)b
1
2
3
4
5
16c
16c
16c
17d
17d
-10
-20
-30
rt
100
100
40e
100
100
70
83
nd
90
99
0
a Temperature during addition of the ketone solution. b Detected by
HPLC, Chiracel OJ column, flow rate 1.0 mL/min, temp 20 °C, eluent
hexane/propan-2-ol (9/1), retention times (R)-15 5.73 min, (S)-15 6.58 min.
c X ) SMe2. d X ) diethylaniline. e Detected by 1H NMR spectroscopy of
the crude product.
insufficient results, we tested (R)-MeO-CBS 17 as an
oxazaborolidine system next, already used several times for
(10) (a) Yang, Z.; He, Y.; Vourloumis, D.; Vallberg, H.; Nicolaou, K.
C. Angew. Chem., Int. Ed. Engl. 1997, 36, 166. (b) Burke, S. D.; Quinn, K.
J.; Chen, V. J. J. Org. Chem. 1998, 63, 8626. (c) Wrobleski, A.;
Sahasrabudhe, K.; Aube´, J. J. Am. Chem. Soc. 2004, 126, 5475. (d) Stapper,
C.; Blechert, S. J. Org. Chem. 2002, 67, 6456. (e) Buschmann, N.; Ru¨ckert,
A.; Blechert, S. J. Org. Chem. 2002, 67, 4325. (f) Stragies, R.; Blechert, S.
Tetrahedron 1999, 55, 8179. (g) Stragies, R.; Blechert, S. J. Am. Chem.
Soc. 2000, 122, 9584.
(11) Voigtmann, U.; Blechert, S. Synthesis 2000, 893.
(12) Mitsunobu, O. Synthesis 1981, 1.
(13) (a) Nakayama, Y.; Kumar, G. B.; Kobayashi, Y. J. Org. Chem 2000,
65, 707. (b) Fu¨rstner, A.; Thiel, O. R.; Kindler, N.; Bartkowska, B. J. Org.
Chem. 2000, 65, 7990.
(14) Julien, P. N.; Taylor, R. J. K. Org. Lett. 2002, 1, 119.
(15) Dodge, J. A.; Jones, S. A. Recent Res. DeV. Org. Chem. 1997, 1,
273.
1228
Org. Lett., Vol. 7, No. 7, 2005