10.1002/chem.201901145
Chemistry - A European Journal
FULL PAPER
3702–3705; d) R. P. Rucker, A. M. Whittaker, H. Dang, G. Lalic, Angew.
Chem. Int. Ed. 2012, 51, 3953–3956; Angew. Chem. 2012, 124, 4019–
4022; e) R. P. Rucker, A. M. Whittaker, H. Dang, G. Lalic, J. Am. Chem.
Soc. 2012, 134, 6571–6574; f) M. H. Nguyen, A. B. Smith III, Org. Lett.
2013, 15, 4872–4875; g) Y. Miki, K. Hirano, T. Satoh, M. Miura, Angew.
Chem. Int. Ed. 2013, 52, 10830–10834; Angew. Chem. 2013, 125,
11030–11034; h) S. Zhu, N. Niljianskul, S. L. Buchwald, J. Am. Chem.
Soc. 2013, 135, 15746–15749; i) S. L. McDonald, C. E. Hendrick, Q.
Wang, Angew. Chem. Int. Ed. 2014, 53, 4667–4670; Angew. Chem.
2014, 126, 4755–4758; j) S.-L. Shi, S. L. Buchwald, Nature Chem. 2015,
7, 38–44; k) Y. Yang, S.-L. Shi, D. Niu, P. Liu, S. L. Buchwald, Science
2015, 349, 62–66; l) D. Niu, S. L. Buchwald, J. Am. Chem. Soc. 2015,
137, 9716–9721; m) D. Nishikawa, K. Hirano, M. Miura, J. Am. Chem.
Soc. 2015, 137, 15620–15623; n) B. N. Hemric, K. Shen, Q. Wang, J.
Am. Chem. Soc. 2016, 138, 5813–5816; o) Z. Zhou, Z. Ma, N. E. Behnke,
H. Gao, L. Kürti, J. Am. Chem. Soc. 2017, 139, 115–118; p) S. Ichikawa,
S. Zhu, S. L. Buchwald, Angew. Chem. Int. Ed. 2018, 57, 8714–8718;
Angew. Chem. 2018, 130, 8850–8854; q) A. A. Thomas, K. Speck, I.
Kevlishvili, Z. Lu, P. Liu, S. L. Buchwald, J. Am. Chem. Soc. 2018, 140,
13976−13984.
Scheme 8. Proposed mechanism for the electrophilic amidation using N-
methoxyamides.
[3]
For recent selected reviews on the Buchwald-Hartwig coupling, see: a)
D. Prim, J.-M. Campagne, D. Joseph, B. Andrioletti, Tetrahedron 2002,
58, 2041–2075; b) J. F. Hartwig, Synlett 2006, 1283–1294; c) J. F.
Hartwig, Acc. Chem. Res. 2008, 41, 1534–1544; d) D. S. Surry, S. L.
Buchwald, Angew. Chem. Int. Ed. 2008, 47, 6338–6361; Angew. Chem.
2008, 120, 6438 – 6461; e) D. S. Surry, S. L. Buchwald, Chem. Sci. 2011,
2, 27–50; f) P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116,
12564−12649.
Conclusions
We have demonstrated
a
copper-catalyzed electrophilic
amidation of organotrifluoroborates. The high compatibility with a
variety of functional groups was realized due to two factors: 1) the
high stability of the N-methoxyamides, and 2) the addition of LiCl,
which dramatically enhanced the rate of the reaction under non-
basic mild conditions. The electrophilic amidation was also
applicable to the synthesis of enamides, which are challenging
substrates for the classic condensation strategy. Mechanistic
studies indicated that the reaction proceeds via non-SN2 oxidative
addition of an aryl copper (I) species. Elucidation of the detailed
mechanism is currently on-going.
[4]
[5]
For selected reviews on the Chan-Lam coupling, see: a) S. V. Ley and
A. W. Thomas, Angew. Chem. Int. Ed. 2003, 42, 5400–5449; Angew.
Chem. 2003, 115, 5558–5607; b) J. X. Qiao, P. Y. S. Lam, Synthesis
2011, 829–856; c) K. S. Rao, T.-S. Wu, Tetrahedron 2012, 68, 7735–
7754.
For copper-catalyzed electrophilic amidation, a) Z. Zhang, Y. Yu, L. S.
Liebeskind, Org. Lett. 2008, 10, 3005–3008; b) C. He, C. Chen, J. Cheng,
C. Liu, W. Liu, Q. Li, A. Lei, Angew. Chem. Int. Ed. 2008, 47, 6414–6417;
Angew. Chem. 2008, 120, 6514–6517; c) Y. Zhou, O. D. Engl, J. S.
Bandar, E. D. Chant, S. L. Buchwald, Angew. Chem. Int. Ed. 2018, 57,
6672–6675; Angew. Chem. 2018, 130, 6782–6785. For examples on
iridium-, rhodium- and cobalt-catalyzed electrophilic amidation, see: d) P.
Patel, S. Chang, Org. Lett. 2014, 16, 3328–3331; e) C. Feng, T.-P. Loh,
Org. Lett. 2014, 16, 3444–3447; f) Z. Hu, X. Tong, G. Liu, Org. Lett. 2016,
18, 2058–2061; g) Y. Liu, F. Xie, A.-Q. Jia, X. Li, Chem. Commun. 2018,
54, 4345–4348; h) S. S. Bera, M. R. Sk, M. S. Maji, Chem. Eur. J. 2019,
25, 1806–1811. For electrophilic amidation using [(arylsulfonyl)oxy]-
substituted amides, see: i) G. X. Ortiz, B. N. Hemric, Q. Wang, Org. Lett.
2017, 19, 1314–1317.
Acknowledgements
This research was supported by a Grant-in-Aid for Scientific
Research (C) from MEXT (15K05436), and the Tobe Maki
scholarship foundation to E. N. Synthetic assistance from Ms.
Kanami Fujita is gratefully acknowledged.
Keywords: Amide • copper catalyst • enamide • electrophilic
reaction • organotrifluoroborate
[6]
[7]
In Liebeskind’s electrophilic amidation (Ref 5a), they surveyed optimized
substituent on amide nitrogen. One of their candidates was the N-
methoxy group, although they concluded the N-acetoxy group was the
best amidating reagent in their report.
[1]
For selected reviews on electrophilic amination, see: a) E. Erdik, M. Ay,
Chem. Rev. 1989, 89, 1947–1980; b) P. Dembech, G. Seconi, A. Ricci,
Chem. Eur. J. 2000, 6, 1281–1286; c) K. Narasaka, M. Kitamura, Eur. J.
Org. Chem. 2005, 4505–4519; d) T. J. Barker, E. R. Jarvo, Synthesis
2011, 3954–3964; e) K. Hirano, M. Miura, Pure Appl. Chem. 2014, 86,
291–297; f) M. Corpet, C. Gosmini, Synthesis 2014, 2258–2271; g) P.
Starkov, T. F. Jamison, I. Marek, Chem. Eur. J. 2015, 21, 5278–5300; h)
M. T. Pirnot, Y.-M. Wang, S. L. Buchwald, Angew. Chem. Int. Ed. 2016,
55, 48–57; Angew. Chem. 2016, 128, 48–57; i) X. Dong, Q. Liu, Y. Dong,
H. Liu, Chem. Eur. J. 2017, 23, 2481–2511.
Our group reported electrophilic amidation using N-methoxyamines, see:
Y. Fukami, T. Wada, T. Meguro, N. Chida, T. Sato, Org. Biomol. Chem.
2016, 14, 5486–5489.
[8]
[9]
Y. Yamamoto, M. Takizawa, X.-Q. Yu, N. Miyaura, Angew. Chem. Int.
Ed. 2008, 47, 928–931; Angew. Chem. 2008, 120, 942–945.
For selected examples, see: a) T. Oishi, M. Nishiura, Z. Hou, Angew.
Chem. Int. Ed. 2008, 47, 5792–5795; Angew. Chem. 2008, 120, 5876–
5879; b) R. Shintani, K. Takatsu, T. Hayashi, Chem. Commun, 2010, 46,
6822–6824; c) H. Ohmiya, U. Yokobori, Y. Makida, M. Sawamura, J. Am.
Chem. Soc. 2010, 132, 2895–2897; d) C.-T. Yang, Z.-Q. Zhang, Y.-C.
Liu, L. Liu, Angew. Chem. Int. Ed. 2011, 50, 3904–3907; Angew. Chem.
2011, 123, 3990–3993.
[2]
For selected examples on copper-catalyzed electrophilic amination using
N-benzoyloxyamines, see: a) A. M. Berman, J. S. Johnson, J. Am. Chem.
Soc. 2004, 126, 5680–5681; b) M. J. Campbell, J. S. Johnson, Org. Lett.
2007, 9, 1521–1524; c) N. Matsuda, K. Hirano, T. Satoh, M. Miura,
Angew. Chem. Int. Ed. 2012, 51, 3642–3645; Angew. Chem. 2012, 124,
[10] For selected reviews on oraganotrifluoroborates, see: a) G. A. Molander,
N. Ellis, Acc. Chem. Res. 2007, 40, 275–286; b) H. A. Stefani, R. Cella,
This article is protected by copyright. All rights reserved.