COMMUNICATIONS
Copper(II)-Promoted, One-Pot Conversion of 1-Alkynes with Anhydrides
References
Employing the above Cu(OAc)2-promoted synthet-
ic protocol for 2,5-disubstituted furans and pyrroles,
multiple heterocyclic compounds, 5i and 9i, were
readily prepared from 2-ethynylthiophene (1i) [Eq.
(4)]. The reaction of 1i with Ac2O (2) and NH4OAc
(3) took place to give the corresponding 2,5-di(thio-
phen-2-yl)furan (5i) in 78% isolated yield, whereas
that of 1i with 8a gave 71% isolated yield of N-
phenyl-2,5-di(thiophen-2-yl)pyrrole (9i).
[1] a) A. D. Yamaguchi, K. M. Chepiga, J. Yamaguchi, K.
Itami, H. M. L. Davies, J. Am. Chem. Soc. 2015, 137,
644–647; b) L. Fomina, G. Z. Galµn, M. Bizarro, J. G.
Sµnchez, I. P. Zaragoza, R. Salcedo, Mater. Chem. Phys.
2010, 124, 257–263; c) T. K. Chakraborty, A. Arora, S.
Roy, N. Kumar, S. Maiti, J. Med. Chem. 2007, 50, 5539–
5542; d) L. Zeng, E. W. Miller, A. Pralle, E. Y. Isacoff,
C. J. Chang, J. Am. Chem. Soc. 2006, 128, 10–11; e) A.
Fürstner, Angew. Chem. 2003, 115, 3706–3728; Angew.
Chem. Int. Ed. 2003, 42, 3582–3603; f) E. Kymakis, I.
Alexandrou, G. A. J. Amaratunga, J. Appl. Phys. 2003,
93, 1764–1768; g) C.-F. Lee, L.-M. Yang, T.-Y. Hwu, A.-
S. Feng, J.-C. Tseng, T.-Y. Luh, J. Am. Chem. Soc. 2000,
122, 4992–4993.
[2] a) W. Debrouwer, T. S. A. Heugebaert, C. V. Stevens, J.
Org. Chem. 2014, 79, 4322–4331; b) H. Cao, H. Zhan, J.
Cen, J. Lin, Y. Lin, Q. Zhu, M. Fu, H. Jiang, Org. Lett.
2013, 15, 1080–1083; c) Y. Zhou, X. Yan, C. Chen, C.
Xi, Organometallics 2013, 32, 6182–6185; d) X. Tang, L.
Huang, C. Qi, W. Wu, H. Jiang, Chem. Commun. 2013,
49, 9597–9599; e) C. He, S. Guo, J. Ke, J. Hao, H. Xu,
H. Chen, A. Lei, J. Am. Chem. Soc. 2012, 134, 5766–
5769; f) H. Jiang, W. Zeng, Y. Li, W. Wu, L. Huang, W.
Fu, J. Org. Chem. 2012, 77, 5179–5183; g) H. Cao, H.-F.
Jiang, X.-S. Zhou, C.-R. Qi, Y.-G. Lin, J.-Y. Wu, Q.-M.
Liang, Green Chem. 2012, 14, 2710–2714; h) M. Zhang,
H.-F. Jiang, H. Neumann, M. Beller, P. H. Dixneuf,
Angew. Chem. 2009, 121, 1709–1712; Angew. Chem.
Int. Ed. 2009, 48, 1681–1684.
In the work described above, we developed a one-
pot, microwave irradiation-promoted, Cu-catalyzed
method for the synthesis of furans and pyrroles from
1-alkynes and anhydrides and primary amines serving
as the respective heteroatom sources. Compared with
previously reported synthetic methods focused on
aryl-substituted 2,5-pyrroles, this one-pot synthetic
protocol is particularly noticeable since alkyl-substi-
tuted furans and pyrroles as well as aryl ones can be
prepared in a short reaction time. Finally, plausible
mechanisms for these reactions have been proposed
and are supported by the isolation of key intermedi-
ates.
[3] a) Q. Zheng, R. Hua, J. Jiang, L. Zhang, Tetrahedron
2014, 70, 8252–8256; b) Q. Zheng, R. Hua, T. Yin, Curr.
Org. Synth. 2013, 10, 161–164; c) J. M. PØrez, R. Cano,
M. Yus, D. J. Ramón, Synthesis 2013, 45, 1373–1379;
d) P. Nun, S. Dupuy, S. Gaillard, A. Poater, L. Cavallo,
S. P. Nolan, Catal. Sci. Technol. 2011, 1, 58–61.
[4] a) S. Kramer, J. L. H. Madsen, M. Rottländer, T.
Skrydstrup, Org. Lett. 2010, 12, 2758–2761; b) D. J.
Gorin, N. R. Davis, F. D. Toste, J. Am. Chem. Soc.
2005, 127, 11260–11261.
[5] a) G.-Q. Chen, X.-N. Zhang, Y. Wei, X.-Y. Tang, M.
Shi, Angew. Chem. 2014, 126, 8632–8637; Angew.
Chem. Int. Ed. 2014, 53, 8492–8497; b) S. Qu, Y. Dang,
C. Song, M. Wen, K.-W. Huang, J. Am. Chem. Soc.
2014, 136, 4974–4991.
[6] a) Y. Lian, T. Huber, K. D. Hesp, R. G. Bergman, J. A.
Ellman, Angew. Chem. 2013, 125, 657–661; Angew.
Chem. Int. Ed. 2013, 52, 629–633; b) J. Dheur, M.
Sauthier, Y. Castanet, A. Mortreux, Adv. Synth. Catal.
2010, 352, 557–561.
Experimental Section
General Procedure
To a 10-mL microwave vessel were added 1-octyne (1a,
45.4 mg, 0.4 mmol), acetic anhydride (2, 122.5 mg,
1.2 mmol), NH4OAc (3, 92.4 mg, 1.2 mmol), Cu(OAc)2·H2O
(4, 80.0 mg, 0.4 mmol) and MeOH (200 mg, 6.25 mmol). The
mixture was stirred at 1508C for 10 min under microwave ir-
radiation. The crude mixture was subjected to column chro-
matography (n-hexane=100) on silica gel to give 2,5-dihex-
ylfuran (5a) as a pale yellow powder; yield: 82.1 mg (87%).
1H NMR (400 MHz, CDCl3): d=5.82 (s, 2H), 2.55 (t, J=
7.2 Hz, 4H), 1.64–1.57 (m, 4H), 1.37–1.30 (m, 12H), 0.88 (t,
J=6.4 Hz, 6H); 13C NMR (100 MHz, CDCl3): d=154.8,
105.1, 31.9, 29.2, 28.4, 28.4, 22.9, 14.3.
[7] Q. Zheng, R. Hua, Tetrahedron Lett. 2010, 51, 4512–
4514.
[8] a) G. Zhang, H. Yi, G. Zhang, Y. Deng, R. Bai, H.
Zhang, J. T. Miller, A. J. Kropf, E. E. Bunel, A. Lei, J.
Am. Chem. Soc. 2014, 136, 924–926; b) M. H. Vilhelm-
sen, J. Jensen, C. G. Tortzen, M. B. Nielsen, Eur. J. Org.
Chem. 2013, 701–711; c) Y.-N. Li, J.-L. Wang, L.-N. He,
Tetrahedron Lett. 2011, 52, 3485–3488; d) S. Zhang, X.
Liu, T. Wang, Adv. Synth. Catal. 2011, 353, 1463–1466;
e) H.-F. Jiang, J.-Y. Tang, A-Z. Wang, G.-H. Deng, S.-
R. Yang, Synthesis 2006, 1155–1161; f) P. Siemsen, R. C.
Acknowledgements
This work was supported by a grant from the National Re-
search Foundation of Korea (NRF) (2011-0016830).
Adv. Synth. Catal. 2015, 357, 3485 – 3490
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3489