2570
S.-L. You, J. W. Kelly / Tetrahedron Letters 46 (2005) 2567–2570
resonances and the Thr hydroxyl resonance, which may
be shifted owing to the presence of H2O in their sample.4
In order to ensure the integrity of didmolamide B (2), its
total synthesis was also accomplished in solution
(Scheme 4). The carboxylic acid 3 was coupled with
the free amine derived from 6 (generated by removing
the Fmoc group with diethylamine) utilizing HBTU
and HOBt in the presence of DIEA (Scheme 4). The
amide-linked bisheterocycle 8 was obtained in 95%
yield. Compound 8 was coupled sequentially with N-
Fmoc-O-trityl-L-threonine and N-Fmoc-L-phenylala-
nine employing HBTU/HOBt/DIEA affording 9 (91%)
and 10 (94%), respectively.
References and notes
1. (a) Degnan, B. M.; Hawkins, C. J.; Lavin, M. F.;
McCaffrey, E. J.; Parry, D. L.; Watters, D. J.
J. Med. Chem. 1989, 32, 1354; (b) Carmeli, S.; Moore,
R. E.; Patterson, G. M. L.; Corbett, T. H.; Valeriote, F. A.
J. Am. Chem. Soc. 1990, 112, 8195; (c) Carmeli, S.;
Moore, R. E.; Patterson, G. M. L. Tetrahedron Lett. 1991,
´
32, 2593; (d) Foster, M. P.; Concepcion, G. P.; Caraan, G.
B.; Ireland, C. M. J. Org. Chem. 1992, 57, 6671; (e)
Boyce, R. J.; Mulqueen, G. C.; Pattenden, G. Tetrahedron
1995, 51, 7321; (f) Ogino, J.; Moore, R. E.; Patterson, G.
M. L.; Smith, C. D. J. Nat. Prod. 1996, 59, 581; (g)
Admi, V.; Afek, U.; Carmeli, S. J. Nat. Prod. 1996, 59,
396; (h) Banker, R.; Carmeli, S. J. Nat. Prod. 1998, 61,
1248; (i) Ishida, K.; Nakagawa, H.; Murakami, M.
J. Nat. Prod. 2000, 63, 1315; (j) Morris, L. A.; Kettenes-
van den Bosch, J. J.; Versluis, K.; Thompson, G. S.;
Jaspars, M. Tetrahedron 2000, 56, 8345; (k) Perez, L. J.;
Faulkner, D. J. J. Nat. Prod. 2003, 66, 247; (l)
Tan, L. K.; Sitachitta, N.; Gerwick, W. H. J. Nat. Prod.
2003, 66, 764; For reviews see: (m) Davidson, B. S. Chem.
Rev. 1993, 93, 1771 and Wipf, P. Chem. Rev. 1995, 95,
2115.
Deprotecting the Fmoc group in 10 using diethylamine
followed by removal of the allyl ester protecting group
using a palladium catalyst, generated from Pd(OAc)2
and polymer-supported triphenylphosphine, gave the
amino acid macrolide precursor.9 The macrolactamiza-
tion was mediated by PyBOP and DMAP yielding 11
in 88% yield. After removing the trityl group from the
threonine residue in 11, didmolamide B (2) was ob-
tained. The properties of this compound were identical
to those of didmolamide B (2) synthesized using a solid
phase strategy.
2. (a) Wipf, P.; Miller, C. P. J. Am. Chem. Soc. 1992, 114,
10975; (b) Wipf, P.; Fritch, P. C. J. Am. Chem. Soc. 1996,
118, 12358; (c) Wipf, P.; Uto, Y. J. Org. Chem. 2000, 65,
1037; (d) Boden, C. D. J.; Pattenden, G. J. Chem. Soc.,
Perkin Trans. 1 2000, 875; (e) McKeever, B.; Pattenden, G.
Tetrahedron Lett. 2001, 42, 2573; (f) Wang, W.; Nan, F. J.
Org. Chem. 2003, 68, 1636.
3. (a) Aguilar, E.; Meyers, A. I. Tetrahedron Lett. 1994, 35,
2477; (b) Downing, S. V.; Aguilar, E.; Meyers, A. I. J.
Org. Chem. 1999, 64, 826; (c) Bertram, A.; Pattenden, G.
Synlett 2000, 1519; (d) Xia, Z.; Smith, C. D. J. Org. Chem.
2001, 66, 3459; (e) Bertram, A.; Pattenden, G. Heterocy-
cles 2002, 58, 521.
In summary, the first total synthesis of didmolamides A
(1) and B (2) has been accomplished by the solid phase
assembly of thiazole-containing amino acids and
Fmoc-protected a-amino acids. The synthesis of didmo-
lamide B was also achieved using solution phase peptide
synthesis (48% overall yield). The crucial thiazole amino
acid (3) was synthesized by a MnO2 oxidation of a thiaz-
oline prepared from an Ala-Cys dipeptide using bis(tri-
phenyl)oxodiphosphonium trifluoromethanesulfonate.
The final macrolactamization was accomplished effi-
ciently by PyBOP and DMAP in all cases.
4. Rudi, A.; Chill, L.; Aknin, M.; Kashman, Y. J. Nat. Prod.
2003, 66, 575.
Acknowledgements
5. You, S.-L.; Razavi, H.; Kelly, J. W. Angew. Chem.
Int. Ed. 2003, 42, 83.
6. You, S.-L.; Kelly, J. W. J. Org. Chem. 2003, 24,
9506.
7. (a) You, S.-L.; Kelly, J. W. Chem. Eur. J. 2004, 10, 71; (b)
You, S.-L.; Kelly, J. W. Tetrahedron 2005, 61, 241.
8. You, S.-L.; Deechongkit, S.; Kelly, J. W. Org. Lett. 2004,
6, 2627.
We gratefully acknowledge NIH grant GM63212 and
the Skaggs Institute for Chemical Biology for generous
financial support. We thank Professor Evan T. Powers
for helpful discussions and Professor Yoel Kashman
for providing the NMR spectra of didmolamides A
and B.
´
9. Dessolin, M.; Guillerez, M.-G.; Thieriet, N.; Guibe, F.;
Loffet, A. Tetrahedron Lett. 1995, 36, 5741.
10. (a) Wang, S.-S. J. Am. Chem. Soc. 1973, 95, 1328; (b) Lu,
G.-S.; Mojsov, S.; Tam, J.; Merrifield, R. B. J. Org. Chem.
1981, 46, 3433.
11. Wipf, P.; Fritch, P. C. Tetrahedron Lett. 1994, 35,
5397.
Supplementary data
Experimental details and NMR data for compounds 1–
11. Supplementary data associated with this article can