Scheme 1
duplexes with correct canonical base pairs exist.4,7,8 Besides
increasing base pairing fidelity, the molecular caps allow a
tuning of duplex stability.
nucleotide probes on DNA microarrays. This residue carries
both a cap at its 2′-position and a phosphoramidite group
reactive toward a linker for immobilization on derivatized
glass surfaces at its 3′-position. The cap employed is an
anthraquinone. Anthraquinones have recently been shown
to be excellent caps for termini when attached as 2′-acyl-
amido groups of 3′-terminal deoxyuridine residues.11 They
give melting point increases of up to 14 °C per residue and
increase base pairing fidelity at the terminus. Other anthra-
quinone derivatives covalently linked to oligonucleotides are
being explored for their charge transport capabilities.12 Dif-
ferent modes of attaching anthraquinone residues to DNA13
or PNA14 exist. Unconjugated anthraquinones can act as
photonucleases,15 and certain anthraquinone derivatives bind
G quadruplex DNA,16 making them a particularly versatile
class of nucleic acid ligands.
Probes on DNA microarrays9 are not commonly employed
with caps, however. This is unfortunate, as the massive
multiplexing of DNA microarray experiments, where up to
2.5 × 105 hybridization equilibria compete with each other,
calls for exquisite selectivity in duplex formation. Recent
studies have led to caps that increase capture efficiency for
hybridization probes 3′-immobilized on glass surfaces.7c,10
The caps tested to date were all attached to the 5′-position
of the probes. For the 3′-termini, similar caps have been
lacking, as these require nucleosides providing both a link
to the surface and a molecular cap. The example of RNA
shows how much a simple 2′-substituent in oligonucleotides
can complicate oligomer syntheses.
Our attempts to generate 2′-capped hybridization probes
for immobilization on microarrays started with the synthesis
of 1 (Scheme 1). This nucleoside features the anthraquinone
carboxamido cap and a free 3′-hydroxyl group for phosphi-
Here we present a synthesis of a deoxyuridine derivative
that functions as a cap-bearing 3′-terminal residue of oligo-
(6) (a) Kutyavin, I. V.; Afonina, I. A.; Mills, A.; Gorn, V. V.; Lukhtanov,
E. A.; Belousov, E. S.; Singer, M. J.; Walburger, D. K.; Lokhov, S. G.;
Gall, A. A.; Dempcy, R.; Reed, M. W.; Meyer, R. B.; Hedgpeth, J. Nucleic
Acids Res. 2000, 28, 655-661. (b) Ott, S. J.; Musfeldt, M.; Ullmann, U.;
Hampe, J.; Schreiber, S. J. Clin. Microbiol. 2004, 42, 2566-2572.
(7) (a) Bleczinski, C. F.; Richert, C. J. Am. Chem. Soc. 1999, 121,
10889-10894. (b) Mokhir, A. A.; Tetzlaff, C. N.; Herzberger, S.;
Mosbacher, A.; Richert, C. J. Combin. Chem. 2001, 3, 374-386. (c) Dogan,
Z.; Paulini, R.; Rojas Stu¨tz, J. A.; Narayanan, S.; Richert, C. J. Am. Chem.
Soc. 2004, 126, 4762-4763.
(8) (a) Maltseva, T. V.; Agback, P.; Repkova, M. N.; Venyaminova, A.
G.; Ivanova, E. M.; Sandtrom, A.; Zarytova, V. F.; Chattopadhyaya, J.
Nucleic Acids Res. 1994, 22, 5590-5599. (b) Hamma, T.; Miller, P. S.
Bioconjugate Chem. 2003, 14, 320-330. (c) Eritja, R. Chem. BiodiV. 2004,
1, 289-295.
(9) (a) Fodor, S. P. A.; Read, J. L.; Pirrung, M. C.; Stryer, L.; Lu, A. T.;
Solas, D. Science 1991, 251, 767-773. (b) Lockhardt, D. J.; Winzeler, E.
A. Nature 2000, 405, 827-836.
(10) Dombi, K. L.; Griesang, N.; Richert, C. Synthesis 2002, 816-824.
(11) Connors, W. H.; Narayanan, S.; Kryatova, O. P.; Richert, C. Org.
Lett. 2003, 5, 247-250.
(12) (a) Gasper, S. M.; Schuster, G. B. J. Am. Chem. Soc. 1997, 119,
12762-12771. (b) Ly, D.; Sanii, L.; Schuster, G. B. J. Am. Chem. Soc.
1999, 121, 9400-9410. (c) Santhosh, U.; Schuster, G. B. J. Am. Chem.
Soc. 2002, 124, 10986-10987. (d) Di Gusto, D. A.; Wlassoff, W. A.;
Giesebrecht, S.; Gooding, J. J.; King, G. C. J. Am. Chem. Soc. 2004, 126,
4120-2121. (e) Okamoto, A.; Kamei, T.; Tanaka, K.; Saito, I. J. Am. Chem.
Soc. 2004, 126, 14732-14733.
(13) (a) Dan, A.; Yoshimura, Y.; Ono, A.; Matsuda, A. Bioorg. Med.
Chem. Lett. 1993, 3, 615-618. (b) Yamana, K.; Mitsui, T.; Yoshioka, J.;
Isuno, T.; Nakano, H. Bioconjugate Chem. 1996, 7, 715-720. (c) Minakawa,
N.; Ono, Y.; Matsuda, A. J. Am. Chem. Soc. 2003, 125, 11545-11552.
(14) Armitage, B.; Koch, T.; Frydenlund, H.; Orum, H.; Batz, H. G.;
Schuster, G. B. Nucleic Acids Res. 1997, 25, 4674-4678.
1570
Org. Lett., Vol. 7, No. 8, 2005