B. Weber, I. Käpplinger, H. Görls, E.-G. Jäger
FULL PAPER
Chem. 1980, 19, 3148; c) Yu. E. Kovalenko, Ya. D. Lampeka,
I. Ya. Levitin, K. B. Yatsimirkii, K. Müller, D. Seidel, E.-G.
Jäger, Russ. Chem. Bull. 1993, 42, 981 (Engl. Transl. from Izv.
Akad. Nauk Ser. Khim. 1993, no. 6, 1092); d) E.-G. Jäger, H.
Keutel, M. Rudolph, B. Krebs, F. Wiesemann, Chem. Ber.
1995, 128, 503.
a) E.-G. Jäger, M. Rudolph, R. Müller, Z. Chem. 1978, 18, 229;
b) E.-G. Jäger, P. Renner, R. Schmidt, Z. Chem. 1978, 18, 193;
c) E.-G. Jäger, B. Kirchhof, E. Schmidt, B. Remde, A. Kipke,
R. Müller, Z. Anorg. Allg. Chem. 1982, 485, 141; d) E.-G. Jäger,
G. Schlenvoigt, B. Kirchhof, M. Rudolph, R. Müller, Z. Anorg.
Allg. Chem. 1982, 485, 173; e) E.-G. Jäger, K. Schuhmann, H.
Görls, Inorg. Chim. Acta 1997, 255, 295; E.-G. Jäger, K.
Schuhmann, H. Görls, Chem. Ber./Recueil 1997, 130, 1643; f)
K. Schuhmann, E.-G. Jäger, Eur. J. Inorg. Chem. 1998, 2051.
a) K. Kubokura, H. Okawa, S. Kida, Bull. Chem. Soc. Jpn.
1978, 51, 2036; b) G. M. Larin, V. V. Minin, E.-G. Jäger, P.
Renner, Zh. Neorg. Khim. 1980, 25, 183; Chem. Abstr. 1980, 92,
139940z; c) E.-G. Jäger, K. Müller, Z. Anorg. Allg. Chem. 1983,
501, 40; d) E.-G. Jäger, J. Knaudt, M. Rudolph, M. Rost,
Chem. Ber. 1996, 129, 1041; e) J. Knaudt, St. Förster, U.
Bartsch, A. Rieker, E.-G. Jäger, Z. Naturforsch., Teil B 2000,
55, 86; f) R. Wegner, M. Gottschaldt, W. Poppitz, E.-G. Jäger,
D. Klemm, J. Mol. Catal. A: Chem. 2003, 201, 91.
M. Rudolph, S. Dautz, E.-G. Jäger, J. Am. Chem. Soc. 2000,
122, 10821.
a) E.-G. Jäger, D. Seidel, M. Rudolph, A. Schneider, Z. Chem.
1986, 26, 76; b) H. Görls, G. Reck, E.-G. Jäger, K. Müller, D.
Seidel, Cryst. Res. Technol. 1990, 25, 1277.
a) D. P. Riley, J. A. Stone, D. H. Busch, J. Am. Chem. Soc.
1977, 99, 767; b) D. P. Riley, D. H. Busch, Inorg. Chem. 1984,
23, 3235; c) T. J. Truex, R. H. Holm, J. Am. Chem. Soc. 1972,
94, 4529; d) S. Koch, R. H. Holm, R. B. Frankel, J. Am. Chem.
Soc. 1975, 97, 6714.
a) V. L. Goedken, J. J. Pluth, S.-M. Peng, B. Bursten, J. Am.
Chem. Soc. 1976, 98, 8014; b) M. C. Weiss, B. Bursten, S.-M.
Peng, V. L. Goedken, J. Am. Chem. Soc. 1976, 98, 8021; c) V. L.
Goedken, S. M. Peng, J. Molin-Norris, Y. Park, J. Am. Chem.
Soc. 1976, 98, 8391; d) V. L. Goedken, Y.-A. Park, J. Chem.
Soc., Chem. Commun. 1975, 214.
a) E.-G. Jäger, Vortragsberichte zum Symposium “Koordination-
schemie der Übergangselemente”, Sektion C, Jena 1969, p. 96;
b) E.-G. Jäger, E. Stein, F. Gräfe, W. Schade, Z. Anorg. Allg.
Chem. 1985, 526, 15; c) E.-G. Jäger, F. Gräfe, Z. Anorg. Allg.
Chem. 1988, 561, 25.
a) F. Wiesemann, R. Wonnemann, B. Krebs, H. Keutel, E.-G.
Jäger, Angew. Chem. Int. Ed. Engl. 1994, 33, 1363; b) I.
Käpplinger, H. Keutel, E.-G. Jäger, Inorg. Chim. Acta 1999,
291, 190; c) I. Käpplinger, M. Grodzicki, V. Schünemann, H.
Görls, A. X. Trautwein, E.-G. Jäger, private communication,
Cambridge Crystallographic Data Centre, CSD 408794/5, Oc-
tober 1998.
a) E.-G. Jäger, Z. Chem. 1985, 25, 446; b) E.-G. Jäger, B.
Schweder, S. Radzuweit, Z. Chem. 1988, 28, 152; c) E.-G. Jäger,
H. Keutel, Inorg. Chem. 1997, 36, 3512.
H. Keutel, I. Käpplinger, E.-G. Jäger, M. Grodzicki, V. Schüne-
mann, A. X. Trautwein, Inorg. Chem. 1999, 38, 2320.
17), l(–21/20), measured in the range 2.39° Յ θ Յ 27.47°, complete-
ness for θmax 99.8%, 5644 independent reflections, Rint = 0.0422,
4402 reflections with Fo Ͼ 4σ(Fo), 308 parameters, 0 restraints,
R1obs = 0.0516, wR2 = 0.1412, R1all = 0.0710, wR2 = 0.1535,
obs
all
GOOF = 1.026, largest difference peak/hole: 1.094/–0.833 eÅ–3.
Crystal Data for (Fe3)2dabco:[51] C58H64Fe2N10O8·CH3OH, Mr =
[11]
[12]
1172.93 gmol–1, dark-green prism, size 0.10×0.09×0.08 mm, tri-
¯
clinic, space group P1, a = 11.3944(6), b = 12.2186(8), c =
13.1020(8) Å, α = 116.067(4), β = 113.938(3), γ = 93.166(4)°, V =
1435.76(15) Å3, T = –90 °C, Z = 1, ρcalcd. = 1.357 gcm–3, μ(Mo-
Kα) = 5.7 cm–1, F(000) = 616, 10088 reflections in h(–14/14), k(–15/
14), l(–16/16), measured in the range 2.04° Յ θ Յ 27.40°, complete-
ness for θmax 98.3%, 6431 independent reflections, Rint = 0.0396,
5119 reflections with Fo Ͼ 4σ(Fo), 387 parameters, 0 restraints,
R1obs = 0.1018, wR2 = 0.2585, R1all = 0.1240, wR2 = 0.2702,
obs
all
GOOF = 1.160, largest difference peak/hole: 1.090/–0.734 eÅ–3.
Acknowledgments
We gratefully acknowledge financial support from the Deutsche
Forschungsgemeinschaft and the Fonds der Chemischen Industrie.
The authors thank Dr. V. Schünemann and P. Wegner (Lübeck) for
the Mössbauer spectrum, Dr. W. Poppitz and S. Schönau for the
MS measurements, Dr. M. Friedrich and B. Rambach for measur-
ing the ESR spectra, and Dr. K. Karaghiosoff for measuring the
1H NMR spectrum of Fe1Cl.
[13]
[14]
[15]
[16]
[1] W. Kaim, B. Schwederski, “Bioinorganic Chemistry: Inorganic
Elements”, in The Chemistry of Life, John Wiley & Sons,
Chichester, 1994.
[2] The Porphyrin Handbook (Eds.: K. M. Kadish, K. M. Smith,
R. Guilard), Elsevier–Academic Press, 1999, vol. 1–10 and
2003, vol. 11–20.
[3] T. Tsumaki, Bull. Chem. Soc. Jpn. 1938, 13, 252.
[4] a) E. N. Jacobsen, Comprehensive Organometallic Chemistry II
(Eds.: G. Wilkinson, F. G. A. Stone, E. W. Abel, L. S. Heg-
edus), Pergamon, New York, 1995, vol. 12 chapter 11.1; b) T.
Katsuki, Coord. Chem. Rev. 1995, 140, 189.
[5] a) E.-G. Jäger, in Chemistry at the Beginning of the Third Mil-
lennium (Eds.: L. Fabbrizzi, A. Poggi), Springer-Verlag, Berlin,
Heidelberg, New York, 2000, p. 103; b) E.-G. Jäger, J. Knaudt,
K. Schuhmann, A. Guba, in Peroxide Chemistry – Mechanistic
and Preparative Aspects of Oxygen Transfer (Ed.: W. Adam),
Wiley-VCH, Weinheim, 2000, p. 249; c) E.-G. Jäger, St. Barth,
H. Keutel, F. Wiesemann, U. Gaudig, in Bioinorganic Chemis-
try – Transition Metals in Biology and their Coordination Chem-
istry (Ed.: A. X. Trautwein), Wiley-VCH, Weinheim, 1997, p.
584.
[17]
[18]
[6] a) E.-G. Jäger, Z. Anorg. Allg. Chem. 1969, 364, 177; b) E.-G.
[19]
Jäger, Z. Chem. 1964, 4, 437.
[7] a) P. Mountford, Chem. Soc. Rev. 1998, 27, 105; b) F. A. Cot-
ton, J. Czuchajowska, Polyhedron 1990, 9, 2553.
[20]
[21]
[22]
[8] a) R. Wegner, M. Gottschaldt, H. Görls, E.-G. Jäger, D.
Klemm, Chem. Eur. J. 2001, 7, 2143; Angew. Chem. 2000, 112,
608; Angew. Chem. Int. Ed. 2000, 39, 595; b) H. Keutel, H.
Görls, W. Poppitz, A. Schütz, E.-G. Jäger, J. Prakt. Chem.
1999, 341, 785; c) H. Elias, D. Hess, H. Paulus, E.-G. Jäger, F.
Gräfe, Z. Anorg. Allg. Chem. 1990, 101, 101; d) E.-G. Jäger, K.
Müller, Z. Anorg. Allg. Chem. 1985, 526, 29; e) E.-G. Jäger, K.
Müller, Z. Anorg. Allg. Chem. 1981, 482, 201.
[9] a) Y. Nishida, K. Hayashida, N. Oishi, S. Kida, Inorg. Chim.
Acta 1980, 38, 213; b) V. V. Minin, Yu. V. Rakitin, G. M. Larin,
E.-G. Jäger, Zh. Neorg. Khim. 1981, 26, 650; Chem. Abstr. 1981,
94, 200292z.
E.-G. Jäger, H. Hähnel, H.-F. Klein, A. Schmidt, J. Prakt.
Chem. 1991, 333, 423.
a) B. Weber, H. Görls, M. Rudolf, E.-G. Jäger, Inorg. Chim.
Acta 2002, 337, 247; b) B. Weber, PhD Thesis, University of
Jena, 2002; c) B. Weber, A Contribution to a Deeper Under-
standing of the Nature of the Iron–Nitrosyl Bond in Bioanalogue
Iron Complexes, Der Andere Verlag, Osnabrück, 2003.
a) K. Müller, E.-G. Jäger, Z. Anorg. Allg. Chem. 1989, 577, 195;
b) E.-G. Jäger, D. Seidel, W. Schade, Z. Chem. 1983, 23, 32; c)
E.-G. Jäger, D. Seidel, Z. Chem. 1983, 23, 261; d) W. Schade,
E.-G. Jäger, K. Müller, D. Seidel, J. Prakt. Chem. 1989, 331,
559.
[23]
[10] a) D. G. Pillsbury, D. H. Busch, J. Am. Chem. Soc. 1976, 98,
7836; b) J. A. Streeky, D. G. Pillsbury, D. H. Busch, Inorg.
2810
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2005, 2794–2811