the development of potent inhibitors. With regard to the
development of new inhibitors, much effort has been devoted
to the synthesis and structural modification of 1,6 but only
several azasugars have been shown to possess fucosidase or
fucosyltransferase inhibitory activity.7 We therefore decided
to design new potential inhibitors of fucosyltransferases by
structural modification of compound 2, since 2 has proved
to be an excellent inhibitor of both fucosidases and
fucosyltransferases.2b,5a According to past structure-activity
relationships for various azasugars,4,8 both the C2-OH and
the C3-OH groups are important for a good inhibitor binding
to the carbohydrate-processing enzymes, whereas the C4-
OH group is not essential for biological activity. We
wondered if the presence of a CF2 group in the C-4 position
of the piperidine would affect the biological activity of the
interesting analogues D-1,4,6-trideoxy-4,4-difluoronojirimy-
cin 5 and L-1,4,6-trideoxy-4,4-difluoronojirimycin 6 (Figure
2).
have ever been reported because of the difficulties of their
synthesis. Herein, we report a concise and highly stereocon-
trolled route to D-1,4,6-trideoxy-4,4-difluoronojirimycin 5
and L-1,4,6-trideoxy-4,4-difluoronojirimycin 6 using Percy’s
method.
Recently Percy has developed methodologies for prepara-
tion of gem-difluoromethylenated compounds from trifluo-
roethanol via [2,3]-Wittig rearrangement of difluoroallylic
ethers.10 He also described that the Sharpless asymmetric
dihydroxylation (AD) of gem-difluoromethylenated olefins
led to gem-difluoromethylenated analogues of carbohy-
drates.11 We were interested in extending Percy’s reaction
for the synthesis of target molecules 5 and 6. Accordingly,
the synthesis of azasugar 5 and 6 began from trifluoroethanol
(Scheme 1), which was initially protected with MEMCl.
Scheme 1. Preparation of Alcohol 9
Figure 2. Design of gem-difluoromethylenated azasugars 5 and
6.
Treatment with 2 equiv of LDA then brought about elimina-
tion and vinyl anion formation. Addition of an approximately
0.6 M solution of monomeric formaldehyde gave alcohol
7,10a which was purified by vacuum distillation on multigram
scale. Alcohol 7 was then converted to its O-allyl ether 8,
and a sigmatropic rearrangement of this compound was
brought about by adding its THF solution to 2.2 equiv
solution of LDA in THF at -78 °C. Alcohol 9 was obtained
in 32% yield from trifluoroethanol (four steps).10b
Many fluorinated azasugars have been prepared for the
biochemical investigations of azasugars; most of these have
been monofluorinated compounds bearing a fluorine at C-2
or C-3.9 Only a few gem-difluoromethylenated azasugars
(3) (a) Karpas, A.; Fleet, G. W. J.; Dwek, R. A.; Petursson, S.;
Namgoong, S. K.; Ramsden, N. G.; Jacob, G. S.; Rademacher, T. W. Proc.
Natl. Acad. Sci., U.S.A. 1988, 85, 9229-9233. (b) Goss, P. E.; Baker, M.
A.; Carver, J. P.; Dennis, J. W. Clin. Cancer Res. 1995, 1, 935-944. (c)
Karlsson, G. B.; Butters, T. D.; Dwek, R. A.; Platt, F. M. J. Biol. Chem.
1993, 268, 570-576.
(4) Butters, T. D.; Dwek, R. A.; Platt, F. M.Curr. Top. Med. Chem. 2003,
3, 561-574.
(5) (a) Compain, P.; Martin, O. R. Curr. Top. Med. Chem. 2003, 3, 541-
560. (b) Staudacher, E.; Altmann, F.; Wilson, I. B. H. Biochim. Biophys.
Acta 1999, 1473, 216-236.
With alcohol 9 in hand, initial effort was focused on the
separation of the enantiomer 9 by transesterification-based
enzymatic resolution12 and kinetic resolution via Sharpless
epoxidation,13 but this turned out to be unsuccessful.14
(6) For representarive examples, see: (a) McDonnell, C.; Cronin, L.;
O’Brien, J. L.; Murphy, P. V. J. Org. Chem. 2004, 69, 3565-3568. (b)
Takahata, H.; Banba, Y.; Ouchi, H.; Nemoto, H. Org. Lett. 2003, 5, 2527-
2529. (c) Haukaas, M. H.; O’Doherty, G. A. Org. Lett. 2001, 3, 401-404.
(d) Xu, Y.-M.; Zhou, W.-S. J. Chem. Soc., Perkin Trans. 1 1997, 741-
746. (e) Rudge, A. J.; Collins, I.; Holmes, A. B.; Baker, R. R. Angew. Chem.,
Int. Ed. Engl. 1994, 33, 2320-2322. (f) Kajimoto, T.; Liu, K. K. C.;
Pederson, R. L.; Zhong, Z. Y.; Ichikawa, Y.; Porco, J. A.; Wong, C.-H. J.
Am. Chem. Soc. 1991, 113, 6187-6196. (g) Kajimoto, T.; Chen, L.; Liu,
K. C.; Wong, C.-H. J. Am. Chem. Soc. 1991, 113, 6678-6680. For reviews,
see: (h) Cipolla, L.; Ferla, B. L.; Nicotra, F. Curr. Top. Med. Chem. 2003,
3, 485-511. (i) Ganem, B. Acc. Chem. Res. 1996, 29, 340-347.
(7) (a) Wong, C.-H.; Dumas, D. P.; Ichikawa, Y.; Koseki, K.; Danishef-
sky, S. J.; Weston, B. W.; Lowe, J. B. J. Am. Chem. Soc. 1992, 114, 7321-
7322. (b) Jefferies, I.; Bowen, B. R. Bioorg. Med. Chem. Lett. 1997, 7,
1171-1174. (c) Qiao, L.; Murray, B. W.; Shimazaki, M.; Schultz, J.; Wong,
C.-H. J. Am. Chem. Soc. 1996, 118, 7653-7662. (d) Liu, H.; Liang, X.;
Søhoel, H.; Bulow, A.; Bols, M. J. Am.Chem. Soc. 2001, 123, 5116-5117.
(e) Mitchell, M. L.; Tian, F.; Wong, C.-H. Angew. Chem., Int. Ed. 2002,
41, 3041-3044.
(9) (a) Arnone, A.; Bravo, P.; Donadelli, A.; Resnati, G. J. Chem. Soc.,
Chem. Commun. 1993, 984-986. (b) Lee, C.-K.; Jiang, H.; Koh, L. L.;
Xu, Y. Carbohydr. Res. 1993, 239, 309-315. (c) Reymond, J.-L.; Pinkerton,
A. A.; Vogel, P. J. Org. Chem. 1991, 56, 2128-2135. (d) Kim, D.-K.;
Kim, G.; Kim, Y.-W. J. Chem. Soc., Perkin Trans. 1 1996, 803-808. (e)
Kilonda, A.; Compernolle, F.; Hoornaert, G. J. J. Org. Chem. 1995, 60,
5820-5824. (f) Arnone, A.; Bravo, P.; Donadelli, A.; Resnati, G.
Tetrahedron 1996, 52, 131-142. (g) Szarek, M. A.; Wu, X.; Szarek, W.
A. Carbohydr. Res. 1997, 299, 165-170.
(10) (a) Patel, S. T.; Percy, J. M.; Wilkes, R. D. Tetrahedron 1995, 51,
9201-9216. (b) Patel, S. T.; Percy, J. M.; Wilkes, R. D. J. Org. Chem.
1996, 61, 166-173. (c) Kariuki, B. M.; Owton, W. M.; Percy, J. M.; Pintat,
S.; Smith, C. A.; Spencer, N. S.; Thomas, A. C.; Watson, M. Chem.
Commun. 2002, 228-229. (d) Broadhurst, M. J.; Brown, S. J.; Percy, J.
M.; Prime, M. E. J. Chem. Soc., Perkin Trans. 1 2000, 3217.
(11) (a) Cox, L. R.; DeBoos, G. A.; Fullbrook, J. J.; Percy, J. M.; Spencer,
N. S.; Tolley, M. Org. Lett. 2003, 5, 337-339. (b) Audouard, C.; Fawcett,
J.; Griffith, G. A.; Kerouredan, E.; Miah, A.; Percy, J. M.; Yang, H. Org.
Lett. 2004, 6, 4269-4272.
(8) Butters, T. D.; Broek, L. A. G. M.; van den; Fleet, G. W. J.; Krulle,
T. M.; Wormald, M. R.; Dwek, R. A.; Platt, F. M. Tetrahedron: Asymmetry
2000, 11, 113-124.
(12) (a) Otera, J. Chem. ReV. 1993, 93, 1449-1470. (b) Burgess, K.;
Lee, D. J. J. Am. Chem. Soc. 1991, 113, 6129-6139.
2190
Org. Lett., Vol. 7, No. 11, 2005