K. Fujiwara et al. / Tetrahedron Letters 46 (2005) 3465–3468
3467
Sasaki, M.; Inoue, M.; Noguchi, T.; Takechi, A.; Tachi-
bana, K. Tetrahedron Lett. 1998, 39, 2783; (f) Crimmins,
M. T.; Choy, A. L. J. Am. Chem. Soc. 1999, 121, 5653; (g)
Oishi, T.; Tanaka, S.-i.; Ogasawara, Y.; Maeda, K.; Oguri,
H.; Hirama, M. Synlett 2001, 952; (h) Maruyama, M.;
Inoue, M.; Oishi, T.; Oguri, H.; Ogasawara, Y.; Shindo,
Y.; Hirama, M. Tetrahedron 2002, 58, 1835; (i) Kadota, I.;
Ohno, A.; Matsuda, K.; Yamamoto, Y. J. Am. Chem. Soc.
2002, 124, 3562; (j) Inoue, M.; Wang, G. X.; Wang, J.;
Hirama, M. Org. Lett. 2002, 4, 3439; (k) Fujiwara, K.;
Souma, S.-i.; Mishima, H.; Murai, A. Synlett 2002, 1493;
(l) Fujiwara, K.; Koyama, Y.; Doi, E.; Shimawaki, K.;
Ohtaniuchi, Y.; Takemura, A.; Soume, S.-i.; Murai, A.
Synlett 2002, 1496; (m) Takemura, A.; Fujiwara, K.;
Murai, A.; Kawai, H.; Suzuki, T. Tetrahedron Lett. 2004,
45, 7567.
In conclusion, a simple stereoselective synthesis of cis-
and trans-3-alkoxy-2-carbomethoxy-2,3,6,7-tetrahydro-
oxocines has been developed based on geometry-
selective synthesis of E- and Z-3-alkoxy-2-propenyl gly-
colates, Ireland–Claisen rearrangement of the glycolate
esters, and the subsequent ring-closing olefin metathesis.
The next challenge toward the application of the method
to natural product synthesis is asymmetric induction
during the Ireland–Claisen rearrangement of the sub-
strate having a cyclic ether group on the C2-oxygen of
the glycolate part or on the C3-oxygen of the 2-propenyl
part. The solution of the challenge will provide an
efficient synthesis of a fused polycyclic ether system.
Further studies on the issue are now in progress in our
laboratory.
6. Recent reviews: (a) Castro, A. M. M. Chem. Rev. 2004,
104, 2939; (b) Nubbemeyer, U. Synthesis 2003, 961; (c)
Chai, Y.; Hong, S.-p.; Lindsay, H. A.; McFarland;
McIntosh, M. C. Tetrahedron 2002, 58, 2905; For the
tandem use of Ireland–Claisen rearrangement and ring-
closing olefin metathesis, see: (d) Miller, J. F.; Termin, A.;
Koch, K.; Piscopio, A. D. J. Org. Chem. 1998, 63, 3158;
(e) Burke, S. D.; Ng, R. A.; Morrison, J. A.; Alberti, M. J.
J. Org. Chem. 1998, 63, 3160.
7. Although the rearrangement using the substrates having
either a glycolate part or a 3-alkoxy-2-propenyl part was
already reported, there was no report about 3-alkoxy-2-
propenyl glycolate esters except glycal glycolate esters. For
glycolate esters see: (a) Whitesell, J. K.; Matthews, R. S.;
Helbling, A. M. J. Org. Chem. 1978, 43, 784; (b) Bartlett,
P. A.; Tanzella, D. J.; Barstow, J. F. J. Org. Chem. 1982,
47, 3941; (c) Sato, T.; Tajima, K.; Fujisawa, T. Tetrahe-
dron Lett. 1983, 24, 729; (d) Burke, S. D.; Fobare, W. F.;
Pacofsky, G. J. J. Org. Chem. 1983, 48, 5221; (e) Gould, T.
J.; Balestra, M.; Wittman, M. D.; Gary, J. A.; Rossano, L.
T.; Kallmerten, J. J. Org. Chem. 1987, 52, 3889; For 3-
alkoxy-2-propenyl esters, see: (f) Ireland, R. E.; Wilcox, C.
S. Tetrahedron Lett. 1977, 18, 2839; (g) Ireland, R. E.;
Thaisrivongs, S.; Vanier, N.; Wilcox, C. S. J. Org. Chem.
1980, 45, 48, For glycal glycolate esters, see Ref. 7g; (h)
Ireland, R. E.; Thaisrivongs, S.; Wilcox, C. S. J. Am.
Chem. Soc. 1980, 102, 1155; (i) Ireland, R. E.; Anderson,
R. C.; Badoud, R.; Fitzsimmons, B. J.; McGarvey, G. J.;
Thaisrivongs, S.; Wilcox, C. S. J. Am. Chem. Soc. 1983,
Acknowledgements
We thank Mr. Kenji Watanabe and Dr. Eri Fukushi
(GC–MS & NMR Laboratory, Graduate School of
Agriculture, Hokkaido University) for the measure-
ments of mass spectra. This work was supported by a
Grant-in-Aid for Scientific Research from the Ministry
of Education, Culture, Sports, Science, and Technology
of Japanese Government.
References and notes
1. Reviews for natural cyclic ethers, see: (a) Yasumoto, T.
Chem. Rec. 2001, 3, 228; (b) Yasumoto, T.; Murata, M.
Nat. Prod. Rep. 2000, 17, 293; (c) Scheuer, P. J. Tetrahe-
dron 1994, 50, 3; (d) Shimizu, Y. Chem. Rev. 1993, 93,
1685; (e) Yasumoto, T.; Murata, M. Chem. Rev. 1993, 93,
1897; See also: (f) Blunt, J. W.; Copp, B. R.; Munro, M.
H. G.; Northcore, P. T.; Prinsep, M. R. Nat. Prod. Rep.
2004, 21, 1; (g) Faulkner, D. J. Nat. Prod. Rep. 2001, 18, 1.
2. (a) Scheuer, P. J.; Takahashi, W.; Tsutsumi, J.; Yoshida,
T. Science 1967, 155, 1267; (b) Tachibana, K. Ph.D.
Thesis; University of Hawaii, 1980; (c) Nukina, M.;
Koyanagi, L. M.; Scheuer, P. J. Toxicon 1984, 22, 169;
(d) Tachibana, K.; Nukai, M.; Joh, Y. G.; Scheuer, P. J.
Biol. Bull. 1987, 172, 122; (e) Murata, M.; Legrand, A.-M.;
Ishibashi, Y.; Fukui, M.; Yasumoto, T. J. Am. Chem. Soc.
1989, 111, 8929; (f) Murata, M.; Legrand, A.-M.; Ishi-
bashi, Y.; Fukui, M.; Yasumoto, T. J. Am. Chem. Soc.
1990, 112, 4380; (g) Satake, M.; Morohashi, A.; Oguri, H.;
Oishi, T.; Hirama, M.; Harada, N.; Yasumoto, T. J. Am.
Chem. Soc. 1997, 119, 11325; See, also: (h) Lewis, R. L.
Toxicon 2001, 39, 97.
˚
105, 1988; (j) Schaus, S. E.; Branalt, J.; Jacobsen, E. N.
J. Org. Chem. 1998, 63, 4876; (k) Wallace, G. A.; Scott,
R. W.; Heathcock, C. H. J. Org. Chem. 2000, 65, 4145.
8. Hinzen, B.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 1997,
1907.
9. (a) Paintner, F. F.; Metz, M.; Bauschke, G. Synthesis
2002, 869; (b) Inanaga, J.; Baba, Y.; Hanamoto, T. Chem.
Lett. 1993, 241.
10. (a) Fu, G. C.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem.
Soc. 1993, 115, 9856; (b) Zuercher, W. J.; Hashimoto, M.;
Grubbs, R. H. J. Am. Chem. Soc. 1996, 118, 6634.
3. Recent reviews for the synthesis of medium-ring ethers,
see: (a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004,
104, 2127; (b) Elliot, M. C. J. Chem. Soc., Perkin Trans. 1
2002, 2301; (c) Elliot, M. C.; Williams, E. J. Chem. Soc.,
Perkin Trans. 1 2001, 2303; (d) Yet, L. Chem. Rev. 2000,
100, 2963; (e) Hoberg, J. O. Tetrahedron 1998, 54, 12631;
(f) Alverz, E.; Candenas, M.-L.; Perez, R.; Ravelo, J. L.;
1
11. Selected spectral data of 12: H NMR (300 MHz, CDCl3)
d 7.37–7.19 (5H, m), 6.02 (1H, ddd, J = 7.7, 8.8, 11.0 Hz),
5.71 (1H, dd, J = 7.0, 11.0 Hz), 4.98 (1H, d, J = 12.1 Hz),
4.44 (1H, dd, J = 3.3, 7.0 Hz), 4.39 (1H, d, J = 12.1 Hz),
4.19 (1H, d, J = 3.3 Hz), 4.16 (1H, td, J = 3.9, 11.7 Hz),
3.73 (3H, s), 3.54–3.41 (1H, m), 2.88–2.70 (1H, m), 2.13–
1.90 (2H, m), 1.63–1.45 (1H, m); 13C NMR (75 MHz,
CDCl3) d 170.3 (c), 138.0 (C), 135.4 (CH), 128.2 (CH · 2),
127.73 (CH · 2), 127.54 (CH), 127.43(CH), 82.0 (CH),
75.5 (CH), 70.4 (CH2 · 2), 52.1 (CH3), 30.5 (CH2), 24.5
(CH2); IR (film) mmax 3029, 2935, 1756, 1497, 1455, 1436,
1389, 1349, 1283, 1203, 1177, 1141, 1115, 1089, 1074, 1028,
736, 699 cmꢀ1; LR-FDMS, m/z 277 (22%, [M+1]+), 276
´
Martın, J. D. Chem. Rev. 1995, 95, 1953.
4. Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-VCH:
Weinhem, 2003.
5. Typical solutions, see: (a) Alvarez, E.; Diaz, M. T.;
´
Hanxing, L.; Martın, J. D. J. Am. Chem. Soc. 1995, 117,
1437; (b) Inoue, M.; Sasaki, M.; Tachibana, K. Tetrahe-
dron Lett. 1997, 38, 1611; (c) Oishi, T.; Nagumo, Y.;
Hirama, M. Synlett 1997, 980; (d) Sasaki, M.; Noguchi,
T.; Tachibana, K. Tetrahedron Lett. 1999, 40, 1337; (e)