Tosin and Murphy
lished work concerning the detailed 3D structures of
bivalent or higher-order multivalent carbohydrate ligands.
Recent indications show that multivalent carbohydrate
ligands with increased rigidity9 or defined architecture10
can have enhanced affinity and selectivities. These
observations suggest that detailed 3D structure-activity
relationships will be interesting. The mechanisms of
action of multivalent ligands are complex11 and include
cross-linking of glycan-binding proteins that can result
in the formation of soluble lattices that can alter receptor
function at the cell surface.6e,12 For glycoclusters, it may
be difficult to define bioactive conformations, assuming
these exist, if flexible scaffolding is used for the display
of the recognition components. The presentations of
ligands preorganized on structurally defined scaffolds will
be of interest. We have previously described the synthesis
and structural analysis of bivalent N-glycosylbenzamides
(1,2) in this context.13 The synthesis and structural
analysis of secondary and tertiary anilides derived from
glucuronic acid (3,4) is reported in the previous article.14
Herein, these studies are extended to the synthesis and
structural analysis of 5. The synthesis of a structurally
(1) (a) Hirschmann, R.; Nicolaou, K. C.; Pietranico, S.; Salvino, J.;
Leahy, E. M.; Sprengeler, P. A.; Furst, G.; Smith, A. B., III; Strader,
C. D.; Cascieri, M. A.; Candelore, M. R.; Donaldson, C.; Vale, W.;
Maechler, L. J. Am. Chem. Soc. 1992, 114, 9217. (b) Nicolaou, K. C.;
Salvino, J. M.; Raynor, K.; Pietranico, S.; Reisine, T.; Freidinger, R.
M.; Hirschmann, R. In Peptides-Chemistry, Structure, and Biology:
Proceedings of the 11th American Peptide Symposium; Rivier, J. E.,
Marshall, G. R., Eds.; ESCOM: Leiden, The Netherlands, 1990; pp
881-884. (c) Hirschmann, R.; Nicolaou, K. C.; Pietranico, S.; Leahy,
E. M.; Salvino, J.; Arison, B. H.; Cichy, M. A.; Spoors, P. G.;
Shakespeare, W. C.; Sprengeler, P. A.; Hamley, P.; Smith, A. B., III;
Reisine, T.; Raynor, K.; Maechler, L.; Donaldson, C.; Vale, W.;
Freidinger, R. M.; Cascieri, M. A.; Strader, C. D. J. Am. Chem. Soc.
1993, 115, 12550.
(2) (a) Wunberg, T.; Kallus, C.; Opatz, T.; Henke, S.; Schmidt, W.;
Kunz, H. Angew. Chem., Int. Ed. 1998, 37, 2503. (b) Kallus, C.; Opatz,
T.; Wunberg, T.; Schmidt, W.; Henke, S.; Kunz, H. Tetrahedron Lett.
1999, 40, 7783. (c) Opatz, T.; Kallus, C.; Wunberg, T.; Schmidt, W.;
Henke, S.; Kunz, H. Eur. J. Org. Chem. 2003, 1527. (d) Opatz, T.;
Kallus, C.; Wunberg, T.; Kunz, H. Tetrahedron 2004, 60, 8613. (e)
Hunger, U.; Ohnsmann, J.; Kunz, H. Angew. Chem., Int. Ed. 2004,
43, 1104. (f) Sofia, M. J. Mol. Diversity 1998, 3, 75. (g) Sofia, M. J.;
Hunter, R.; Chan, T. Y.; Vaughan, A.; Dulina, R.; Wang, H. M.; Gange,
D. J. Org. Chem. 1998, 63, 2802. (h) Sofia, M. J. Med. Chem. Res. 1998,
8, 362. (i) Sofia, M. J.; Silva, D. J. Curr. Opin. Drug Discovery Dev.
1999, 2, 365-376. (j) Silva, D. J.; Sofia, M. J. Tetrahedron Lett. 2000,
41, 855. (k) Jain, R.; Kamau, M.; Wang, C. G.; Ippolito, R.; Wang, H.
M.; Dulina, R.; Anderson, J.; Gange, D.; Sofia, M. J. Bioorg. Med. Chem.
Lett. 2003, 13, 2185. (l) Baizman, E. R.; Branstrom, A. A.; Longley, C.
B.; Allanson, N.; Sofia, M. J.; Gange, D.; Goldman, R. C. Microbiology
(Reading, U.K.) 2000, 146, 3129. (m) Ghosh, M.; Dulina, R. G.; Kakarla,
R.; Sofia, M. J. J. Org. Chem. 2000, 65, 8387.
(3) (a) Hirschmann, R.; Hynes, J., Jr.; Cichy-Knight, M. A.; van Rijn,
R. D.; Sprengeler, P. A.; Spoors, P. G.; Shakespeare, W. C.; Pietranico-
Cole, S.; Barbosa, J.; Liu, J.; Yao, W.; Rohrer, S.; Smith, A. B., III. J.
Med. Chem. 1998, 41, 1382. (b) Hirschmann, R.; Ducry, L.; Smith, A.
B., III. J. Org. Chem. 2000, 65, 8307. (c) Wessel, H. P.; Banner, D.;
Gubernator, K.; Hilpert, K.; Myller, K.; Tschopp, T. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 751. (d) Moitessier, N.; Dufour, S.; Chre´tien,
F.; Thiery, J. P.; Maigret, B.; Chapleur, Y. Bioorg. Med. Chem. 2001,
9, 511. (e) Papageorgiou, C.; Haltiner, R.; Bruns, C.; Petcher, T. J.
Bioorg. Med. Chem. Lett. 1992, 2, 135. (f) LeDiguarher, T.; Boudon,
A.; Elwell, C.; Paterson, D. E.; Billington, D. C. Bioorg. Med. Chem.
Lett. 1996, 6, 1983. (g) Cai, J. Q.; Davison, B. E.; Ganellin, C. R.;
Thaisrivongs, S.; Wibley, K. S. Carbohydr. Res. 1997, 300, 109. (h)
Dinh, T. Q.; Smith, C. D.; Du, X. H.; Armstrong, R. W. J. Med. Chem.
1998, 41, 981. (i) Moitessier, N.; Minoux, H.; Maigret, B.; Chretien,
F.; Chapleur, Y. Lett. Pept. Sci. 1998, 5, 75. (j) Zuccarello, G.; Bouzide,
A.; Kvarnstrom, I.; Niklasson, G.; Svensson, S. C. T.; Brisander, M.;
Danielsson, H.; Nillroth, U.; Karlen, A.; Hallberg, A.; Classon, B.;
Samuelsson, B. J. Org. Chem. 1998, 63, 4898. (k) Hanessian, S.;
Huynh, H. K. Synlett 1999, 1, 102. (l) Le Merrer, Y.; Poitout, L.;
Depezay, J.-C. Methods Mol. Med. 1999, 23, 227. (m) Xuereb, H.;
Maletic, M.; Gildersleeve, J.; Pelczer, I.; Kahne, D. J. Am. Chem. Soc.
2000, 122, 1883. (n) Kawato, H. C.; Nakayama, K.; Inagaki, H.; Ohta,
T. Org. Lett. 2001, 3, 3451. (o) Liao, Y.; Li, Z. M.; Wong, H. N. C. Chin.
J. Chem. 2001, 19, 1119. (p) Velasco-Torrijos, T.; Murphy, P. V.
Tetrahedron: Asymmetry 2005, 16, 261. (q) Nakayama, K.; Kawato,
H. C.; Inagaki, H.; Ohta, T. Org. Lett. 2001, 3, 3447. (r) The Versatile
Assembly on Sugar Templates (VAST) program was initiated by the
Alchemia Corp., see: Schliebs, D. Mod. Drug Discovery 2001, 4, 61.
(s) Chery, F.; Cronin, L.; O’Brien, J. L.; Murphy, P. V. Tetrahedron
2004, 60, 6597. (t) Castoldi, S.; Cravini, M.; Micheli, F.; Piga, E.; Russo,
G.; Seneci, P.; Lay, L. Eur. J. Org. Chem. 2004, 2853. (u) Schweizer,
F. Trends Glycosci. Glycotechnol. 2003, 15, 315. (v) Le, G. T.; Ab-
benante, G.; Becker, B.; Grathwohl, M.; Halliday, J.; Tometzki, G.;
Zuegg, J.; Meutermans, W. Drug Discovery Today 2003, 8, 701. (w)
Chery, F.; Murphy, P. V. Tetrahedron Lett. 2004, 45, 2067. (x) Nicolaou,
K. C.; Trujillo, J. I.; Chibale, K. Tetrahedron 1997, 53, 8751.
(4) (a) Boer, J.; Gottschling, D.; Schuster, A.; Holzmann, B.; Kessler,
H. Angew. Chem., Int. Ed. 2001, 40, 3870. (b) Von Roedern, E. G.;
Kessler, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 687. (c) Cipolla, L.;
Forni, E.; Jimenez-Barbero, J.; Nicotra, F. Chem.sEur. J. 2002, 8,
3976. (d) Peri, F.; Cipolla, L.; Forni, E.; Nicotra, F. Monatsh. Chem.
2002, 133, 369.
(5) Lee, Y. V.; Townsend, R. R.; Hardy, M. R.; Lo¨nngren, J.; Arnarp,
J.; Haraldsson, M.; Lo¨nn, H. J. Biol. Chem. 1983, 258, 199.
(6) For reviews on multivalency, see: (a) Mammen, M.; Choi, S.-K.;
Whitesides, G. M. Angew. Chem., Int. Ed. 1998, 37, 2754. (b) Gabius,
H.-J.; Siebert, H. C.; Andre, S.; Jiminez-Barbero, J.; Rudiger, H.
ChemBioChem 2004, 5, 740. (c) Kiessling, L. L.; Gestwicki, J. E.;
Strong, L. E. Curr. Opin. Chem. Biol. 2000, 4, 696. (d) Kiessling, L.
L.; Strong, L. E.; Gestwicki, J. E. Annu. Rep. Med. Chem. 2000, 35,
321. (e) Brewer, C. F.; Miceli, M. C.; Baum, L. G. Curr. Opin. Struct.
Biol. 2002, 12, 616. (f) Mulder, A.; Huskens, J.; Reinhoudt, D. N. Org.
Biomol. Chem. 2004, 3409. (g) Pieters, R. J. Trends Glycosci. Glycote-
chnol. 2004, 16, 243. (h) Lindhorst, T. K. Top. Curr. Chem. 2002, 218,
201.
(7) Koeller, K. M.; Wong, C. H. Nat. Biotechnol. 2000, 18, 835.
(8) (a) Liebe, B.; Kunz, H. Angew. Chem., Int. Ed. Engl. 1997, 36,
618. (b) Hummel, G.; Schmidt, R. R. Tetrahedron Lett. 1997, 38, 1173.
(c) Ragupathi, G.; Coltart, D. M.; Williams, L. J.; Koide, F.; Kagan, E.;
Allen, J.; Harris, C.; Glunz, P. W.; Livingston, P. O.; Danishefsky, S.
J. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 13699. (d) Verez-Bencomo,
V.; Ferna´ndez-Santana, V.; Hardy, E.; Toledo, M. E.; Rodriguez, M.
C.; Heynngnezz, L.; Rodriguez, A.; Baly, A.; Herrera, L.; Izquierdo,
M.; Villar, A.; Valde´s, Y.; Cosme, K.; Deler, M. L.; Montane, M.; Garcia,
M.; Ramos, M.; Aguilar, A.; Medina, E.; Toran, G.; Sosa, I.; Hernandez,
I.; Mart´ınez, R.; Muzachio, R.; Carmenates, A.; Costa, L.; Cardoso, F.;
Campa, C.; Diaz, M.; Roy, R. Science 2004, 305, 522.
(9) Vrasidas, I.; Andre, S.; Valentini, P.; Bock, C.; Lensch, M.;
Kaltner, H.; Liskamp, R. M. J.; Gabius, H. J.; Pieters, R. J. Org. Biomol.
Chem. 2003, 1, 803-810.
(10) (a) Gestwicki, J. E.; Cairo, C. W.; Strong, L. E. J. Am. Chem.
Soc. 2002, 124, 14922. (b) Wittmann, V.; Seeberger, S. Angew. Chem.,
Int. Ed. 2000, 39, 4348. (c) Wittmann, V.; Seeberger, S. Angew. Chem.,
Int. Ed. 2004, 43, 900.
(11) (a) Gestwicki, J. E.; Cairo, C. W.; Strong, L. E.; Oetjen, K. A.;
Kiessling, L. L. J. Am. Chem. Soc. 2002, 124, 14922. (b) Collins, B. E.;
Paulson, J. C. Curr. Opin. Chem. Biol. 2004, 8, 617.
(12) (a) Andre, S.; Ortega, P. J. C.; Perez, M. A.; Roy, R.; Gabius,
H.-J. Glycobiology 1999, 9, 1253. (b) Brewer, C. F. Biochim. Biophys.
Acta 2002, 1572, 255.
(13) (a) Bradley, H.; Fitzpatrick, G.; Glass, W. K.; Kunz, H.; Murphy,
P. V. Org. Lett. 2001, 3, 2629. (b) Murphy, P. V.; Bradley, H.; Tosin,
M.; Pitt, N.; Fitzpatrick, G. M.; Glass, W. K. J. Org. Chem. 2003, 68,
5693.
(14) Tosin, M.; O’Brien, C.; Fitzpatrick, G. M.; Mu¨ller-Bunz, H.;
Glass W. K.; Murphy, P. V. J. Org. Chem. 2005, 70, xxxx.
(15) One of the referees suggested that we explain why glycosyl
azides were used. They were chosen for the ease and reliability with
which they can be synthesized from readily available donors. Also,
glycosyl azides are generally very stable under a wide range of reaction
conditions, including acid and base. In addition, they are bioorthogonal
and suitable for further functionalization should this be of interest in
future.
(16) Peto, C.; Batta, G.; Gyo¨rgydea´k, Z.; Sztaricskai, F. Liebigs Ann.
Chem. 1991, 505.
(17) Preliminary mechanistic studies have been reported: Murphy,
P. V.; Pola´kova´, M.; Pitt, N.; Tosin, M. Presented at the 22nd
International Carbohydrate Symposium, Glasgow, U.K., July 2004,
C44.
(18) The full experimental details are provided in the Supporting
Information.
(19) Upreti, M.; Ruhela, D.; Vishwakarma, R. A. Tetrahedron 2000,
56, 6577.
(20) Kunz, H.; Waldmann, H. Angew. Chem., Int. Ed. Engl. 1984,
23, 71.
4108 J. Org. Chem., Vol. 70, No. 10, 2005