E. C. Clement, P. R. Carlier / Tetrahedron Letters 46 (2005) 3633–3635
3635
by use of NaNO2 and Fe2SO4 in DMF10 to yield (S)-17
and (S)-18, respectively; HPLC analysis of (S)-17
indicated 99% ee. The primary aromatic amine (S)-16
was converted to the corresponding N,N-dimethylamine
(S)-19 in 89% yield in the presence of NaBH4 and form-
aldehyde in THF.11 HPLC analysis of (S)-19 indicated
99% ee. Refluxing (S)-16 with phthalic anhydride
in acetic acid for 1.5 h12 afforded (S)-20 in 80% yield;
HPLC analysis indicated 98% ee.
K. A.; Ross, S. T.; Samanen, J. M.; Takata, D. T.; Yuan,
C.-K. Tetrahedron Lett. 1995, 36, 9433–9436.
2. Samanen, J. M.; Ali, F. E.; Barton, L. S.; Bondinell, W.
E.; Burgess, J. L.; Callahan, J. F.; Calvo, R. R.; Chen, W.;
Chen, L.; Erhard, K.; Feuerstein, G.; Heys, R.; Hwang,
S.-M.; Jakas, D. R.; Keenan, R. M.; Ku, T. W.; Kwon, C.;
Newlander, K. A.; Nichols, A.; Parker, M.; Peishoff, C. E.;
Rhodes, G.; Ross, S.; Shu, A.; Simpson, R.; Takata, D.;
Yellin, T. O.; Uzsinskas, I.; Venslavsky, J. W.; Yuan,
C.-K.; Huffman, W. F. J. Med. Chem. 1996, 39, 4867–
4870.
3. Keenan, R. M.; Callahan, J. F.; Samanen, J. M.; Bondi-
nell, W. E.; Calvo, R. R.; Chen, L.; DeBrosse, C.;
Eggleston, D. S.; Haltiwanger, R. C.; Hwang, S. M.;
Jakas, D. R.; Ku, T. W.; Miller, W. H.; Newlander, K. A.;
Nichols, A.; Parker, M. F.; Southhall, L. S.; Uzinskas, I.;
Vasko-Moser, J. A.; Venslavsky, J. W.; Wong, A. S.;
Huffman, W. F. J. Med. Chem. 1999, 42, 545–559.
4. Rosenstrom, U.; Skold, C.; Lindeberg, G.; Botros, M.;
Nyberg, F.; Karlen, A.; Hallberg, A. J. Med. Chem. 2004,
47, 859–870.
5. Ma, D.; Wang, G.; Wang, S.; Kozikowski, A. P.; Lewin,
N. E.; Blumberg, P. M. Bioorg. Med. Chem. Lett. 1999, 9,
1371–1374.
6. Success has also been achieved in Cu-catalyzed intramo-
lecular Ullman reactions that do not require the presence
of such activating functional groups: (a) Ma, D.; Zhang,
Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc. 1998, 120,
12459–12467; (b) Ma, D.; Xia, C. Org. Lett. 2001, 3, 2583–
2586.
Removal of the N4-allyl group from the tetrahydro-
1,4-benzodiazepin-3-ones proved more difficult than
anticipated. Traditional Pd(PPh3)4 catalyzed deallylation
methods, either with N,N0-dimethylbarbaturic acid,13 or
with the Et3N/HCO2H system recommended for
imides,14 proved completely unsuccessful. Catalysis
15
by RhCl(PPh3)3
also proved ineffectual, and
RuCl2(PPh3)3 catalyzed deallylation16 proceeded only
in low to moderate yields. In the end acceptable yields
were obtained with Bundleꢀs oxidative deallylation pro-
tocol.17 Treatment of (S)-13 and (S)-19 with catalytic
potassium osmate in the presence of N-methyl morphol-
ine N-oxide and sodium periodate gave (S)-22 and (S)-
21 in 75% and 64% yield, respectively. Chiral stationary
phase HPLC indicated that no racemization had
occurred during the deallylation. Since alkylation of
tetrahydro-1,4-benzodiazepin-3-ones at N4 is facile,18
a variety of alkyl groups can now be installed at this
position of 21–22.
7. Schutkowski, M.; Mrestani-Klaus, C.; Neubert, K. Int. J.
Pept. Protein Res. 1995, 45, 257–265.
8. Ohfune, Y.; Kurokawa, N.; Higuchi, N.; Saito, M.;
Hashimoto, M.; Tanaka, T. Chem. Lett. 1984, 441.
9. Wissner, A.; Overbeek, E.; Reich, M. F.; Floyd, M. B.;
Johnson, B. D.; Mamuya, N.; Rosfjord, E. C.; Discafani,
C.; Shi, X.-Q.; Rabindran, S. K.; Gruber, B. C.; Ye, F.;
Hallett, W. A.; Nilakantan, R.; Shen, R.; Wang, Y.-F.;
Greenberger, L. M.; Tsou, H.-R. J. Med. Chem. 2003, 46,
49–63.
10. Wassmundt, F. M.; Kiesman, W. F. J. Org. Chem. 1995,
60, 1713–1719.
11. Giumanini, A. G.; Chiavari, G.; Gusiani, M. M.; Rossi, P.
Synthesis 1980, 743–746.
In summary, enantiomerically pure tetrahydro-1,4-benzo-
diazepin-3-ones (12–22) were synthesized from deriva-
tives of L-alanine. The key cyclization step proceeded
quickly and easily without racemization, even in the case
of 2° amines (cf. 13, 14). Our choice of 8 as a precursor
allows differential functionalization of N1, N4, and the
C10-amino group. This method could be trivially ex-
tended to other amino acids and should thus facilitate
synthesis of diversely functionalized 1,4-benzodiazepin-
3-ones.
12. Perry, C. J.; Parveen, Z. J. Chem. Soc., Perkin Trans. 2
2001, 512–521.
13. Garro-Helion, F.; Merzouk, A.; Guibe, F. J. Org. Chem.
1993, 58, 6109–6113.
Acknowledgements
14. Koch, T.; Hesse, M. Synthesis 1992, 931–932.
15. Doi, H.; Sakai, T.; Yamada, K.-i.; Tomioka, K. Chem.
Commun. 2004, 1850–1851.
We thank the NSF (CHE-0213525) and the Virginia
Tech Department of Chemistry for financial support.
16. Hu, Y.-J.; Dominique, R.; Das, S. K.; Roy, R. Can.
J. Chem. 2000, 78, 838–845.
References and notes
17. Kitov, P. I.; Bundle, D. R. Org. Lett. 2001, 3, 2835–
2838.
18. Ali, F. E.; Yuan, C. C. K.; Ross, S. T.; Hall, L. B. Mol.
Divers. 2000, 5, 1–5.
1. Miller, W. H.; Ku, T. W.; Ali, F. E.; Bondinell, W. E.;
Calvo, R. R.; Davis, L. D.; Erhard, K. F.; Hall, L. B.;
Huffman, W. F.; Keenan, R. M.; Kwon, C.; Newlander,