utilizing a cyclic ketal as a template for synthesis, an
anomeric effect of 1.5 kcal mol-1, such as shown with the
axially oriented C2-oxygen substituent in 1,3a,6 could be
advantageous in either promoting reactivities4 or controlling
remote stereochemistry7 away from the pending spiro center
at C2. This lack of development is likely because ketals are
mostly regarded as protecting groups (see 4 and 5). Although
there are limited reports featuring reactions of 18 and 6,9 this
approach to spiroketal construction has been largely under-
appreciated.10,11 Given the synthetic prowess of RCM,12 we
have been pursuing applications in natural product synthesis
to feature the ketal-tethered RCM (Scheme 1). We com-
(Scheme 2). We note here that the relative stereochemistry
at C22 (see the arrow) was not unambiguously assigned when
we began our study.1a We elected to go with C22 being R
because of its availability. After C22 was assigned as S,1b
we continued our efforts with the C22-R stereochemistry to
focus on establishing the feasibility of the ketal-tethered
RCM approach.
Scheme 2
Scheme 1
municate here our efforts in the synthesis of the C11-C23
fragment of spirastrellolide A.13
Retrosynthetically, the synthesis of the C11-C23 fragment
(7) would feature the ketal-tethered RCM of cyclic ketal 8
Cyclic ketal 8 can be envisioned from an acid-promoted
ketal formation through substitution at the C17 anomeric
position of lactol 9 with the known alcohol 10 (11 + 12).14
Lactol 9 can be attained from a vinyl Grignard addition to
lactone 13, which can be prepared from aldehyde 15 through
diol 14. The stereochemistry at C20 will be set using a known
allylation protocol,15 and stereocenters at C21 and C22-R
could be borrowed from D-glucose.16
(6) For reviews on the anomeric effect related to carbohydrate chemistry,
see; (a) Postema, M. H. D. C-Glycoside Synthesis; CRC Press: Ann Arbor,
MI, 1995. Also see: (b) Woods, R. J.; Andrews, C. W.; Bowen, J. P. J.
Am. Chem. Soc. 1992, 114, 859. (c) Miljkovic, M.; Yeagley, D.; Deslong-
champs, P.; Dory, Y. L. J. Org. Chem. 1997, 62, 7597.
(7) Ghosh, S. K.; Hsung, R. P.; Liu, J. Submitted for publication in J.
Am. Chem. Soc.
Our synthetic efforts commenced with transforming D-
glucose (16) to the vinyl alcohol 17 in three steps using
reported procedures (Scheme 3).16 Protection of C22-OH
in 17 as a benzyl ether followed by hydrolysis of benzylidene
acetal gave 1817 in 82% yield over two steps. A double
silylation using TBSCl capped both C21 and C23 hydroxyl
groups, and an oxidative cleavage sequence led to aldehyde
15 in 74% overall yield from 18. With aldehyde 15 in hand,
a BF3‚Et2O-promoted allylation15 was accomplished to afford
(8) (a) van Hooft, P. A. V.; Leeuwenburgh, M. A.; Overkleeft, H. A.;
van der Marel, G. A.; van Boeckel, C. A. A.; van Boom, J. H. Tetrahedron
Lett. 1998, 39, 6061. (b) Leeuwenburgh, M. A.; Appeldoorn, C. C. M.;
van Hooft, P. A. V.; Overkleeft, H. A.; van der Marel, G. A.; van Boom,
J. H. Eur. J. Org. Chem. 2000, 837. (c) Bassindale, M. J.; Hamley, P.;
Leitner, A.; Harrity, J. P. A. Tetrahedron Lett. 1999, 40, 3247.
(9) (a) Hansen, E. C.; Lee, D. J. Am. Chem. Soc. 2004, 126, 15074. (b)
Hansen, E. C.; Lee, D. J. Am. Chem. Soc. 2003, 125, 9582. (c) Keller, V.
A.; Martinellie, J. R.; Strieter, E. R.; Burke, S. D. Org. Lett. 2002, 4, 467.
(d) Voight, E. A.; Rein, C.; Burke, S. D. J. Org. Chem. 2002, 67, 8489 and
references cited therein. (e) Scholl, M.; Grubbs, R. H. Tetrahedron Lett.
1999, 40, 1425.
(10) Kinderman, S. S.; Doodeman, R.; van Beijma, J. W.; Russcher, J.
C.; Tjen, K. C. M. F.; Kooistra, T. M.; Mohaselzadeh, H.; van Maarseveen,
J. H.; Hiemstra, H.; Schoemaker, H. E.; Rutjes, F. P. J. T. AdV. Synth. Catal.
2002, 344, 736.
(11) For some examples of ketal-tethered reactions, see: (a) Roush, W.
R.; Barba, D. A. Tetrahedron Lett. 1997, 38, 8781. (b) Wong, T.; Wilson,
P. D.; Woo, S.; Fallis, A. G. Tetrahedron Lett. 1997, 38, 7045. (c)
Ainsworth, P. J.; Craig, D.; White, A. J. P.; Williams, D. J. Tetrahedron
1996, 52, 8937. (d) Boeckman, R. K., Jr.; Estep, K. G.; Nelson, S. G.;
Walters, M. A. Tetrahedron Lett. 1991, 32, 4095. (e) Jung, M. E.; Street,
L. J. J. Am. Chem. Soc. 1984, 106, 8327.
(13) For recent synthetic efforts toward spirastrellolide A, see: (a) Dalby,
S. M.; Loiseleur, O.; Paterson, I. Abstracts of Papers, 229th National
Meeting of the American Chemical Society, San Diego, CA, Spring 2005;
American Chemical Society: Washington, DC, 2005; ORGN-331. (b)
Wang, C.; Forsyth, C. J. Abstracts of Papers, 229th National Meeting of
the American Chemical Society, San Diego, CA, Spring 2005; American
Chemical Society: Washington, DC, 2005; ORGN-414.
(14) For the synthesis of 10, see: (a) Zampella, A.; Sepe, V.; D’Orsi,
R.; Bifulco, G.; Bassarello, C.; D’Auria, M. V. Tetrahedron: Asymmetry
2003, 14, 1787. (b) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986,
108, 5919.
(12) For reviews on metathesis, see: (a) Grubbs, R. H.; Miller, S. J.;
Fu, G. C. Acc. Chem. Res. 1995, 28, 446. (b) Schrock, R. R. Tetrahedron
1999, 55, 8141. (c) Mori, M. In Topics in Organometallic Chemistry;
Fu¨rstner, A., Ed.; Springer-Verlag: Berlin, Heidelberg, Germany, 1998;
Vol. 1, p 133. (d) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012. (e)
Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18.
(15) Keck, G. E.; Boden, E. P. Tetrahedron Lett. 1984, 25, 265.
(16) For the synthesis of 17, see: (a) Paquette, L. A.; Zeng, Q.; Tsui,
H.-C.; Johnston, J. N. J. Org. Chem. 1998, 63, 8491. (b) Baker, S. R.;
Clissold, D. W.; McKillop, A. Tetrahedron Lett. 1988, 29, 991.
(17) See the Supporting Information for procedures and characterization
data for all new compounds.
2274
Org. Lett., Vol. 7, No. 11, 2005