Journal of the American Chemical Society
COMMUNICATION
analysis, clear fluorescent bands were observed for samples
derived from cell pellets 2 and 3, but not for the sample derived
from pellet 1 (left panel, Figure 2b), indicating selec-
tive cross-coupling of 1a with HPGÀUb inside E. coli cells.
The identities of the fluorescent HPGÀUb bands were con-
firmed by Coomassie blue staining of the same gel (right panel,
Figure 2b). The lower abundance of HPGÀUb protein seen in
sample 2 was probably due to the inhibition of protein expression by
thepalladiumcomplex and 1a when they were added separately.20
In conclusion, we have discovered a new palladium complex
for the aqueous copper-free Sonogashira cross-coupling reactions.
This palladium complex promoted the efficient cross-coupling of
a wide range of aryl iodides with the terminal alkyne-containing
peptide and protein substrates in good to excellent yields. The
capability of this cross-coupling reaction in functionalizing a
metabolically encoded alkyne-containing protein in E. coli was
also demonstrated, indicating a potential utility of this reaction in
monitoring and manipulating proteins in cellular systems. Efforts
to further optimize this palladium-catalyzed cross-coupling
reaction for cellular applications, for example, by immobilizing
the complex onto nanoparticles to improve cell penetration and
reduce complex loading,21 are currently underway.
E. M. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 9482. (e) Blackman, M. L.;
Royzen, M.; Fox, J. M. J. Am. Chem. Soc. 2008, 130, 13518.
(6) (a) Saxon, E.; Bertozzi, C. R. Science 2000, 287, 2007. (b)
Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2000, 2, 1939.
(c) K€ohn, M.; Breinbauer, R. Angew. Chem., Int. Ed. 2004, 43, 3106.
(7) Song, W.; Wang, Y.; Qu, J.; Madden, M. M.; Lin, Q. Angew.
Chem., Int. Ed. 2008, 47, 2832. (b) Song, W.; Wang, Y.; Qu, J.; Lin, Q.
J. Am. Chem. Soc. 2008, 130, 9654. (c) Wang, Y.; Song, W.; Hu, W. J.; Lin,
Q. Angew. Chem., Int. Ed. 2009, 48, 5330. (d) Song, W.; Wang, Y.; Yu, Z.;
Vera, C. I.; Qu, J.; Lin, Q. ACS Chem. Biol. 2010, 5, 875. (e) Wang, J.;
Zhang, W.; Song, W.; Wang, Y.; Yu, Z.; Li, J.; Wu, M.; Wang, L.; Zang, J.;
Lin, Q. J. Am. Chem. Soc. 2010, 132, 14812.(f) Lim, R. K.; Lin, Q., Acc.
Chem. Res. 2011, ASAP, DOI: 10.1021/ar200021p.
(8) (a) Lin, Y. A.; Chalker, J. M.; Floyd, N.; Bernardes, G. J. L.; Davis,
B. G. J. Am. Chem. Soc. 2008, 130, 9642. (b) Ai, H.-w.; Shen, W.; Brustad,
E.; Schultz, P. G. Angew. Chem., Int. Ed. 2010, 49, 935. (c) Lin, Y. A.;
Chalker, J. M.; Davis, B. G. J. Am. Chem. Soc. 2010, 132, 16805.
(9) (a) Herrerías, C. I.; Yao, X.; Li, Z.; Li, C. J. Chem. Rev. 2007,
107, 2546. (b) Doucet, H.; Hierso, J. ÀC. Angew. Chem., Int. Ed. 2007,
46, 834. (c) Firouzabadi, H.; Iranpoor, N.; Gholinejad, M. J. Mol. Catal.
A: Chem. 2010, 321, 110.
(10) For a recent example, see:Besanceney-Webler, C.; Jiang, H.;
Zheng, T.; Feng, L.; Soriano del Amo, D.; Wang, W.; Klivansky, L. M.;
Marlow, F. L.; Liu, Y.; Wu, P. Angew. Chem., Int. Ed. 2011, 50, 8051.
(11) Kodama, K.; Fukuzawa, S.; Nakayama, H.; Sakamoto, K.;
Kigawa, T.; Yabuki, T.; Matsuda, N.; Shirouzu, M.; Takio, K.; Yokoyama,
S.; Tachibana, K. ChemBioChem 2007, 8, 232.
’ ASSOCIATED CONTENT
(12) (a) Speers, A. E.; Adam, G. C.; Cravatt, B. F. J. Am. Chem. Soc.
2003, 125, 4686. (b) Kennedy, D. C.; Lyn, R. K.; Pezacki, J. P. J. Am.
Chem. Soc. 2009, 131, 2444.
(13) (a) Chalker, J. M.; Wood, C. S. C.; Davis, B. G. J. Am. Chem. Soc.
2009, 131, 16346. (b) Spicer, C. D.; Davis, B. G. Chem. Commun. 2011,
47, 1698.
S
Supporting Information. Synthetic schemes for new
b
ligands, experimental procedures, and characterization of all com-
pounds. This material is available free of charge via the Internet at
(14) Li, J. H.; Zhang, X. D.; Xie, Y. X. Eur. J. Org. Chem. 2005, 4256.
(15) Vijay-Kumar, S.; Bugg, C. E.; Cook, W. J. J. Mol. Biol. 1987,
194, 531.
(16) van Hest, J. C. M.; Kiick, K. L.; Tirrell, D. A. J. Am. Chem. Soc.
2000, 122, 1282.
’ AUTHOR INFORMATION
Corresponding Author
qinglin@buffalo.edu
(17) (a) Our preliminary studies indicated that excess amount of the
palladium complex was necessary to achieve high conversions due to
nonspecific sequestration of the palladium complex by the proteins; see
Figure S1 in Supporting Information for details. Similar phenomena
were also observed in the palladium-catalyzed Suzuki-Miyaura cross-
coupling reactions with protein substrates; see ref 13. To further alleviate
this problem, we also pre-incubated the palladium complex with the aryl
iodide (“pre-activation”) to minimize the effect of non-specific binding.
(b) 2.4% DMSO was used in the reaction to help dissolve fluorescein
iodide. (c) We found that adding the palladium complex/1a mixture pre-
incubated for 1 h (“pre-activated”) into the HPGÀUb solution in two
portions instead of one improved the reaction yield.
’ ACKNOWLEDGMENT
We gratefully acknowledge the National Institutes of Health
(R01 GM 085092) for financial support.
’ REFERENCES
(1) (a) Dieterich, D. C.; Hodas, J. J.; Gouzer, G.; Shadrin, I. Y.; Ngo,
J. T.; Triller, A.; Tirrell, D. A.; Schuman, E. M. Nat. Neurosci. 2010, 13,
897. (b) Laughlin, S. T.; Baskin, J. M.; Amacher, S. L.; Bertozzi, C. R.
Science 2008, 320, 664.
(18) The greater than 5 kDa increase in apparent MW is typically
observed in electrophoresis of PEGylated proteins: see ref 7c as well as
Lim, R. K.; Lin, Q. Chem. Commun. 2010, 46, 7993. Deiters, A.; Cropp,
T. A.; Summerer, D.; Mukherji, M.; Schultz, P. G. Bioorg. Med. Chem.
Lett. 2004, 14, 5743.
(19) (a) Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry;
University Science Books: Mill Valley, CA, 1994. (b) Waldron, K. J.;
Rutherford, J. C.; Ford, D.; Robinson, N. J. Nature 2009, 460, 823. (c)
Antos, J. M.; Francis, M. B. Curr. Opin. Chem. Biol. 2006, 10, 253.
(20) In our cytotoxicity studies based on colony formation assay and
growth curve measurement, the pre-activated palladium complex/1a
mixture and 1a itself did not show toxicity to E. coli cells while palladium
complex and palladium complex/1a mixture added separately showed
some level of cytotoxicity. See Figure S4 in Supporting Information for
details.
(2) (a) Sletten, E. M.; Bertozzi, C. R. Angew. Chem., Int. Ed. 2009,
48, 6974. (b) Lim, R. K.; Lin, Q. Chem. Commun. 2010, 46, 1589.(c)
Chalker, J. M.; Bernardes, G. J. L.; Davis, B. G. Acc. Chem. Res. 2011,
ASAP, DOI: 10.1021/ar200056q.
(3) (a) Carrico, I. S.; Carlson, B. L.; Bertozzi, C. R. Nat. Chem. Biol.
2007, 3, 321. (b) Zeng, Y.; Ramya, T. N.; Dirksen, A.; Dawson, P. E.;
Paulson, J. C. Nat. Methods 2009, 6, 207.
(4) (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596. (b) Tornøe, C. W.; Christensen,
C.; Meldal, M. J. Org. Chem. 2002, 67, 3057. (c) Wang, Q.; Chan, T. R.;
Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. J. Am. Chem. Soc.
2003, 125, 3192.
(5) (a) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J. Am. Chem. Soc.
2004, 126, 15046. (b) Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.;
Agard, N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi,
C. R. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 16793. (c) Ning, X.; Guo, J.;
Wolfert, M. A.; Boons, G.-J. Angew. Chem., Int. Ed. 2008, 47, 2253.
(d) Dieterich, D. C.; Link, A. J.; Graumann, J.; Tirrell, D. A.; Schuman,
(21) Yusop, R. M.; Unciti-Broceta, A.; Johansson, E. M. V.; Sꢀanchez-
Martín, R. M.; Bradley, M. Nat. Chem. 2011, 3, 239.
15319
dx.doi.org/10.1021/ja2066913 |J. Am. Chem. Soc. 2011, 133, 15316–15319