10.1002/anie.202007350
Angewandte Chemie International Edition
COMMUNICATION
[10] a) T. M. McGuire, E. M. López-Vidal, G. L. Gregory, A. Buchard, J. CO2
Util. 2018, 27, 283-288; b) G. L. Gregory, M. Ulmann, A. Buchard, RSC
Adv. 2015, 5, 39404-39408; c) M. Honda, M. Tamura, K. Nakao, K.
Suzuki, Y. Nakagawa, K. Tomishige, ACS Catal. 2014, 4, 1893-1896; d)
T. Hirose, S. Shimizu, S. Qu, H. Shitara, K. Kodama, L. Wang, RSC Adv.
2016, 6, 69040-69044; using a stoichiometric iodine source: e) B. A. Vara,
T. J. Struble, W. Wang, M. C. Dobish, J. N. Johnston, J. Am. Chem. Soc.
complemented by control experiments emphasize the importance
of kinetic differentiation in pendent alcohol protection as a way to
isolate otherwise difficult to prepare CO2 based heterocycles
through a unique cascade process.
2015, 137, 7302-7305. See also: f) A. Hosseinian,
S. Farshbaf, R.
Acknowledgements
Mohammadi, A. Monfaredc, E. Vessally, RSC Adv. 2018, 8, 17976-
17988.
We thank the CERCA Program/Generalitat de Catalunya, ICREA,
the Spanish MINECO (CTQ2017-88920-P and CTQ2017-88777-
R) and AGAUR (2017-SGR-232 and 2017-SGR-290) for financial
support. C. Q. acknowledges the Chinese Research Council for a
predoctoral fellowship (2018-06200078) and B. L. thanks the
Marie Curie COFUND/ProBIST postdoctoral fellowship program
(grant agreement 754510). A.V. thanks MINECO for an FPI
predoctoral fellowship.
[11] a) C. J. Whiteoak, E. Martin, M. Martínez Belmonte, J. Benet-Buchholz,
A. W. Kleij, Adv. Synth. Catal. 2012, 354, 469-476; b) J. Rintjema, W.
Guo, E. Martin, E. C. Escudero-Adán, A. W. Kleij, Chem. Eur. J. 2015,
21, 10754-10762; c) B. R. Buckley, A. P. Patel, K. G. Upul Wijayantha,
Eur. J. Org. Chem. 2014, 474-478; d) D. J. Darensbourg, A. Horn, Jr; A.
I. Moncada, Green Chem. 2010, 12, 1376-1379.
[12] a) J. Vaitla, Y. Guttormsen, J. K. Mannisto, A. Nova, T. Repo, A. Bayer,
K. H. Hopmann, ACS Catal. 2017, 7, 7231-7244; b) B. D. W. Allen, C. P.
Lakeland, J. P. A. Harrity, Chem. Eur. J. 2017, 23, 13830-13857. See
also ref. 2b.
[13] For selected examples: a) G. L. Gregory, G. Kociok-Köhn, A. Buchard,
Polym. Chem. 2017, 8, 2093-2104; b) G. L. Gregory, L. M. Jenisch, B.
Charles, G. Kociok-Köhn, A. Buchard, Macromolecules 2016, 49, 7165-
7169; c) P. Brignou, J.-F. Carpentier, S. M. Guillaume, Macromolecules
2011, 44, 5127-5135; d) D. J. Darensbourg, A. I. Moncada, S.-H. Wei,
Macromolecules 2011, 44, 2568–2576; e) D. J. Darensbourg, A. I.
Moncada, Macromolecules 2010, 43, 5996-6003.
Keywords: carbon dioxide • cyclic carbonates • heterocycles •
homogeneous catalysis • organocatalysis
[1]
a) J. Artz, T. E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg,
A. Bardow, W. Leitner, Chem. Rev. 2018, 118, 434-504; b) S. Liu, L. R.
Winter, J. G. Chen, ACS Catal. 2020, 10, 2855-2871; c) M. B. Ross, P.
de Luna, Y. Li, C.-T. Dinh, D. Kim, P. Yang, E. H. Sargent, Nat. Catal.
2019, 2, 648-658; d) A. Goeppert, M. Czaun, J.-P. Jones, G. K. Surya
Prakash, G. A. Olah, Chem. Soc. Rev. 2014, 43, 7995-8048.
[14] For some recently developed procedures: a) M. Wadamoto, H.
Yamamoto, J. Am. Chem. Soc. 2005, 127, 14556-14557; b) G.-L. Chai,
B. Zhu, J. Chang, J. Org. Chem. 2019, 84, 120-127; d) Y. Zhang, N. Li,
N. Goyal, G. Li, H. Lee, B. Z. Lu, C. H. Senanayake, J. Org. Chem. 2013,
78, 5775-5781.
[2]
[3]
[4]
a) Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933; b)
W. Guo, J. E. Gómez, À. Cristòfol, J. Xie, A. W. Kleij, Angew. Chem. Int.
Ed. 2018, 57, 13735-13747; c) L. Song, Y.-X. Jiang, Z. Zhang, Y.-Y. Gui,
[15] a) J. Rintjema, R. Epping, G. Fiorani, E. Martín, E. C. Escudero-Adán, A.
W. Kleij, Angew. Chem. Int. Ed. 2016, 55, 3972-3976; b) V. Laserna, E.
Martin, E. C. Escudero-Adán, A. W. Kleij, ACS Catal. 2017, 7, 5478-
5482; c) S. Sopeña, M. Cozzolino, C. Maquilón, E. C. Escudero-Adán,
M. Martínez Belmonte, A. W. Kleij, Angew Chem Int Ed. 2018, 57, 11203-
11207; d) R. Huang, J. Rintjema, J. González-Fabra, E. Martín, E. C.
Escudero-Adán, C. Bo, A. Urakawa, A. W. Kleij, Nat. Catal. 2019, 2, 62-
70; e) C. Maquilón, B. Limburg, V. Laserna, D. Garay-Ruiz, J. González-
Fabra, C. Bo, M. Martínez Belmonte, E. C. Escudero-Adán, A. W. Kleij,
Organometallics 2020, 39, 1642-1651.
X.-Y.
Zhou,
D.-G.
Yu,
Chem.
Commun.
2020,
DOI:
10.1039/D0CC00547A.
a) A. Tortajada, F. Juliá-Hernández, M. Börjesson, T. Moragas, R. Martin,
Angew. Chem. Int. Ed. 2018, 57, 15948-15982; b) W. Guo, V. Laserna,
J. Rintjema, A. W. Kleij, Adv. Synth. Catal. 2016, 358, 1602-1607; c) D.
U. Nielsen, X.-M. Hu, K. Daasbjerg, T. Skrydstrup, Nat. Catal. 2018, 1,
244-254.
For some selected examples: a) A. J. Kamphuis, F. Picchioni, P. P.
Pescarmona, Green Chem. 2019, 21, 406-448; b) B. Grignard, S.
Gennen, C. Jérôme, A. W. Kleij, C. Detrembleur, Chem. Soc. Rev. 2019,
48, 4466-4514; c) S. J. Poland, D. J. Darensbourg, Green Chem. 2017,
19, 4990–5011; d) S. Paul, Y. Zhu, C. Romain, R. Brooks, P. K. Saini, C.
K. Williams, Chem. Commun. 2015, 51, 6459-6479.
[16] For the first use of the Al-complexes in cyclic carbonate synthesis: a) C.
J. Whiteoak, N. Kielland, V. Laserna, E. C. Escudero-Adán, E. Martin, A.
W. Kleij, J. Am. Chem. Soc. 2013, 135, 1228-1231; b) C. J. Whiteoak, N.
Kielland, V. Laserna, F. Castro-Gómez, E. Martin, E. C. Escudero-Adán,
C. Bo, A. W. Kleij, Chem. Eur. J. 2014, 20, 2264-2275.
[5]
[6]
a) R. Rajjak Shaikh, S. Pornpraprom, V. D’Elia, ACS Catal. 2018, 8, 419-
450; b) J. W. Comerford, I. D. V. Ingram, M. North, X. Wu, Green Chem.
2015, 17, 1966-1987; c) C. Martín, G. Fiorani, A. W. Kleij, ACS Catal.
2015, 5, 1353-1370.
[17] For details of the structure of 2p, see CCDC-1997736.
[18] Note that beside the 5-membered carbonate product 1h also substantial
amounts of a tetrahydrofuran byproduct (cf., Scheme 2) was noted. At
110 ºC, the ratio ( 4:1) between these products further changed in
favour of the latter.
a) G. Fiorani, W. Guo, A. W. Kleij, Green Chem. 2015, 17, 1375-1389; b)
M. Alves, B. Grignard, R. Mereau, C. Jerome, T. Tassaing, C.
Detrembleur, Catal. Sci. Technol. 2017, 7, 2651-2684; for recent original
work: c) N. Liu, Y.-F. Xie, C. Wang, S.-J. Li, D. Wei, M. Li, B. Dai, ACS
Catal. 2018, 8, 9945-9957.
[19] For fast scans in the potential energy surface the xTB program
developed by Grimme was used, see ref. 20. This program allows the
scanning of one or more distances, angles and dihedral angles at the
same time or sequentially, giving a general idea of each structure.
Furthermore, it performs meta-dynamics simulations using the root-
mean-square deviation (RMSD) in Cartesian space as a collective
variable. Full access to the computational data is provided through:
[7]
For some illustrative, recent examples: a) G. Fiorani, M. Stuck, C. Martín,
M. Martínez-Belmonte, E. Martin, E. C. Escudero-Adán, A. W. Kleij,
ChemSusChem 2016, 9, 1304-1311; b) H. Zhou, H. Zhang, S. Mu, W.-Z.
Zhang, W.-M. Ren, X.-B. Lu, Green Chem. 2019, 21, 6335-6341; c) L.
Longwitz, J. Steinbauer, A. Spannenberg, T. Werner, ACS Catal. 2018,
8, 665-672.
[20] a) S. Grimme, C. Bannwarth, P. Shushkov, J. Chem. Theory Comput.
2017, 13, 1989-2009. See also: b) J.-D. Chai, M. Head-Gordon, Phys.
Chem. Chem. Phys. 2008, 10, 6615-6620.
[8]
[9]
a) B. Yu, L.-N. He, ChemSusChem 2015, 8, 52-62; for some recent
original examples: b) R. Yousefi, R. Yousefi, T. J. Struble, J. L. Payne,
M. Vishe, N. D. Schley, J. N. Johnston, J. Am. Chem. Soc. 2019, 141,
618-625; c) J. K. Mannisto, A. Sahari, K. Lagerblom, T. Niemi, M. Nieger,
G. Sztanó, T. Repo, Chem. Eur. J. 2019, 25, 10284-10289.
a) M. Tamura, K. Noro, M. Honda, Y. Nakagawa, K. Tomishige, Green
Chem. 2013, 15, 1567-1577; b) J. Hwang, D. Han, J. J. Oh, M. Cheong,
H.-J. Koo, J. S. Lee, H. S. Kim, Adv. Synth. Catal. 2019, 361, 297-306.
5
This article is protected by copyright. All rights reserved.