3944 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 12
Letters
(4) Katzenellenbogen, J. A.; O’Malley, B. W.; Katzenellenbogen, B.
S. Tripartite steroid hormone receptor pharmacology. Interaction
with multiple effector sites as a basis for the cell- and promoter-
specific action of these hormones. Mol. Endocrinol. 1996, 10,
119-131.
(5) For a recent review see: Bregradze V. I. Dicarba-closo-dodeca-
boranes C2B10H12 and their derivatives. Chem. Rev. 1992, 92,
209-223.
(6) Fauchere, J. L.; Do, K. Q.; Jow, P. Y. C.; Hansch, C. Unusually
strong lipophilicity of ‘fat’ or ‘super’ amino acid, including a new
reference value for glycine. Experientia 1980, 36, 1203-1204.
Yamamoto, K.; Endo, Y. Utility of boron clusters for drug design.
agonist without any marked antagonist effect below
10-6 M.
The compound 11 bearing adamantane in place of the
carborane cage of 7 exhibited agonist activity 10 times
greater than that of 7 (though this may also be related
to a change of flexibility in the side chain). In the case
of 12 bearing adamantane in place of the carborane cage
of 8, the potent antagonist activity of 8 was changed to
the weak agonist activity of 12. Recently, ER ligands
based on a 1,1-diarylethylene moiety bearing bridged
bicyclic hydrocarbon cores have been developed.21 Most
of the 1,1-diarylethylenes showed activity as partial
agonists and/or antagonists for ERR. Our 1-(4-hydroxy-
phenyl)adamantane derivatives (11 and 12) exhibited
full agonist activity without any marked antagonist
effect below 10-6 M.
In summary, we have synthesized and biologically
evaluated novel ER ligands bearing two phenolic resi-
dues on a three-dimensional hydrophobic core structure
(carborane, bicyclo[2.2.2]octene, or adamantane). Among
the carborane-containing compounds (6, 7, and 8), a
dramatic change of agonist/antagonist balance was
observed depending on the direction of the second
hydroxyphenyl moiety and the distance between it and
the carborane cage. In general, replacement of the
carborane cage with 3D hydrocarbon cores increases the
agonist nature of the ligand. The compound 10 exhibited
potent agonist activity for ER, even though the two
phenolic groups appear to be similarly directed to those
of the partial agonist/antagonist 6. The results obtained
with these three-dimensional hydrophobic core struc-
tures raise the possibility that structure-function stud-
ies could lead to the development of more selective
estrogen agonists and antagonists, which could be useful
as therapeutic agents for a wide variety of conditions.
Hansch-Fujita hydrophobic parameters
π of dicarba-closo-
dodecaboranyl groups. BioMed. Chem. Lett. 2001, 11, 2389-
2392.
(7) Iijima T.; Endo Y.; Tsuji M.; Kawachi E.; Kagechika H.; Shudo
K. Dicarba-closo-dodecaboranes as a pharmacophore. Retinoidal
antagonists and potential agonists. Chem. Pharm. Bull. 1999,
47, 398-404. Endo, Y.; Iijima, T.; Yaguchi, K.; Kawachi, E.;
Kagechika, H. Medicinal application of dicarba-closo-dodeca-
boranes. Relation between retinoidal activity and conformation
of two aromatic nuclei. BioMed. Chem. Lett. 2001, 11, 1307-
1311: 8. Ohta, K.; Iijima, T.; Kawachi, E.; Kagechika, H.; Endo,
Y. Novel retinoid X receptor (RXR) antagonists having a dicarba-
closo-dodecaborane as a hydrophobic moiety. BioMed. Chem.
Lett. 2004, 14, 5913-5918.
(8) Fujii, S.; Hashimoto, Y.; Suzuki, T.; Ohta, S.; Endo, Y. A new
class of androgen receptor antagonists bearing carborane in place
of a steroidal skeleton. BioMed. Chem. Lett. 2005, 15, 227-230.
(9) Endo, Y.; Iijima, T.; Yamakoshi, Y.; Yamaguchi, M.; Fukasawa,
H.; Shudo, K. Potent estrogen agonists bearing dicarba-closo-
dodecaborane as a hydrophobic pharmacophore. J. Med. Chem.
1999, 42, 1501-1504.
(10) Endo, Y.; Iijima, T.; Yamakoshi, Y.; Fukasawa, H.; Miyaura, C.;
Inada, M.; Kubo, A.; Itai, A. Potent estrogen agonists based on
carborane as a hydrophobic skeletal structure. A new medicinal
application of boron clusters. Chem. Biol. 2001, 8, 341-355.
(11) Endo, Y.; Yoshimi, T.; Iijima, T.; Yamakoshi, Y. Estrogen
antagonists bearing dicarba-closo-dodecaborane as a hydrophobic
pharmacophore. BioMed. Chem. Lett. 1999, 9, 3387-3392.
(12) Endo, Y.; Yoshimi, T.; Miyaura, C. Boron clusters for medicinal
drug design: selective estrogen receptor modulators bearing
carborane. Pure Appl. Chem. 2003, 75, 1197-1205.
(13) The dihedral angle between the two C-H bonds of icosahedral
o-carborane is 63.44 degrees.
(14) Coult, R.; Fox, M. A.; Gill, W. R.; Herbertson, P. L.; MacBride,
J. A. H.; Wade, K. C-Arylation and C-heteroarylation of icosa-
hedral carboranes via their copper (I) derivatives. J. Organomet.
Chem. 1993, 462, 19-29.
Acknowledgment. This work was supported by a
Grant-in-Aid for Scientific Research (B) (No. 16390032)
from the Ministry of Education, Culture, Sports, Science
and Technology, Japan.
(15) Forgione, P.; Wilson, P. D.; Fallis, A. G. Magnesium mediated
carbometalation of propargyl alcohols: direct route to frans and
franones. Tetrahedron Lett. 2000, 41, 17-20.
(16) de Meijere, A. Dispiro[2.0.2.4]deca-7,9-diene und vergleichs-
verbindungen: darstellung, UV-, NMR und photoelektronen-
spektroskopische untersuchungen. Chem. Ber. 1974, 107, 1684-
1701.
(17) Komatsu, K.; Aonuma, S.; Jinbu, Y.; Tsuji, R.; Hirosawa, C.;
Takeuchi, K. Generation and oligomerization of bicycle[2,2, 2]-
octyne and properties of tris(bicycle[2,2,2]octane)benzene ob-
tained from the linear trimer. J. Org. Chem. 1991, 56, 195-
203.
(18) Tseng, C. C.; Handa, I.; Abdel-Sayed A. N.; Bauer, L. N-[(Aryl
substituted adamantane)alkyl] 2-mercaptoacetamideines, their
corresponding disulfides and 5-phosphorothioates. Tetrahedron
1988, 44, 1893-1904.
Supporting Information Available: Details of synthesis,
spectral data for compounds 7-12, stereo representations for
6-8, 9-12, and experimental procedures of biological evalu-
ations. This material is available free of charge via the Internet
References
(19) Kitamura, S.; Ohmegi, M.; Sanoh, S.; Sugihara, K.; Yoshihara,
S.; Fujimoto, N.; Ohta, S. Estrogenic activity of styrene oligomers
after metabolic activation by rat liver microsomes. Environ.
Health Perspect. 2003, 111, 329-334.
(20) Endo, Y.; Yamamoto, K.; Kagechika, H. Utility of boron clusters
for drug design. Relation between estrogen receptor binding
affinity and hydrophobicity of phenols bearing various types of
carboranyl groups. BioMed. Chem. Lett. 2003, 13, 4089-4092.
(21) Muthyala, R. S.; Sheng, S.; Carlson, K. E.; Katzenellenbogen,
B. S.; Katzenellenbogen, J. A. Bridged bicyclic cores containing
a 1,1-diarylethylene motif are high-affinity subtype-selective
ligands for estrogen recptor. J. Med. Chem. 2003, 46, 1589-1602.
(1) Green, S.; Walter, P.; Kumar, V.; Krust, A.; Bornert, J. M.; Argos,
P.; Chambon, P. Human oestrogen receptor cDNA: sequence,
expression and homology to v-erb-A. Nature 1986, 320, 134-
139.
(2) Kuiper, G. G. J. M.; Enmark, E.; Pelto-Huikko, M.; Nilsson, S.;
Gustafsson, J. A. Cloning of a novel estrogen receptor expressed
in rat prostate and ovary. Proc. Natl. Acad. Sci. U.S.A. 1996,
93, 5925-5930.
(3) Grese, T. A.; Sluka, J. P.; Bryant, H. U.; Cullinan, G. J.;
Glasebrook, A. L.; Jones, C. D.; Matsumoto, K.; Palkowitz, A.
D.; Sato, M.; Termine, J. D.; Winter, M. A.; Yang, N. N.; Dodge,
J. A. Molecular determinants of tissue selectivity in estrogen
receptor modulators. Proc. Natl. Acad. Sci. U.S.A. 1997, 94,
14105-14110.
JM050195R