Communications
Table 2: Production profile of 1 by Fusarium sp. RK97-94 in the broth.
affect the labile E,E,E,E,E pentaene moiety; ether formation
from 2 to 7 and 11 and the intramolecular Michael reaction
from 9 to 10 or from 13 to 14 are both highly stereoselective;
the reductive removal of the epoxide with SmI2 without
effecting demethoxylation, and the deprotection of a hemi-
aminal under neutral, oxidative conditions via vinyl ether 16
by using a newly developed phenylselenylethyl protecting
group, are also useful transformations. Detailed biological
studies on both enantiomers of lucilactaene are underway, the
results of which will be reported in due course.
Entry
t [h]
pH[a]
PCV[b] [%]
Production of 1
ee [%][c]
[mgmLÀ1
]
1
2
3
4
24
48
72
96
7.4
7.2
8.3
8.5
10
30
45
50
0
n.d.[d]
10.0
10.3
6.9
0.014
0.084
0.71
[a] pH value of the fermentation broth. [b] Packed-cell volume (v/v).
[c] Optical purity was determined by HPLC analysis on a chiral phase
(chiralcel OD-RH). [d] Not determined.
Received: January 7, 2005
Published online: April 14, 2005
tion of the epoxide can also be explained reasonably as arising
from the selective epoxidation from the opposite face to that
with the hydroxyethyl substituent. In the synthesis of 1, a
Michael reaction and oxidation to form the hemiaminal are
the remaining steps. Should the Michael reaction be the first
step, then we suspect that racemization must occur during the
subsequent oxidation step, because the internal Michael
addition is a spontaneous reaction, as demonstrated for the
synthetic conversion of 13 into 14 without racemization. That
is, there is an acidic moiety in the enzyme responsible for this
oxidation which causes racemization. If oxidation is the first
step, a subsequent racemization process is conceivable
(Scheme 7): Intermediate 3 may undergo tautomerism to a
Keywords: asymmetric synthesis · biosynthesis · lucilactaene ·
.
racemization · total synthesis
[1] a) B. A. Forster, H. A. Coffey, M. J. Morin, F. Rastinejad,
Science 1999, 286, 2507; b) B. Vogelstein, D. Lane, A. J. Levine,
Nature 2000, 408, 307.
[2] a) A. J. Levine, Cell 1997, 88, 323; b) D. Hanahan, R. A.
Weinberg, Cell 2000, 100, 57.
[3] H. Kakeya, S.-I. Kageyama, L. Nie, R. Onose, G. Okada, T.
Beppu, C. J. Norbury, H. Osada, J. Antibiot. 2001, 54, 850.
[4] T. Sugawara, H. Shinonaga, H. Simura, R. Yoshikawa, K.
Yamamoto, Jpn. Kokai Tokkyo Koho 319289, (December 3,
1996).
[5] a) W. C. A. Gelderblom, W. F. O. Marasas, P. S. Steyn, P. G.
Thiel, K. J. Merwe, P. H. Rooyen, R. Vleggaar, P. L. Wessels, J.
Chem. Soc. Chem. Commun. 1984, 122; b) P. S. Steyn, R. J.
Vleggaar, J. Chem. Soc. Chem. Commun. 1985, 1189; c) Z. Song,
R. J. Cox, C. M. Lazarus, T. J. Simpson, ChemBioChem 2004, 5,
1196.
[6] H. Kakeya, I. Takahashi, G. Okada, K. Isono, H. Osada, J.
Antibiot. 1995, 48, 733.
[7] Y. Hayashi, J. Yamaguchi, M. Shoji, Tetrahedron 2002, 58, 9839.
[8] a) Y. Hayashi, K. Narasaka, Chem. Lett. 1998, 313; b) Y.
Hayashi, J. Kanayama, J. Yamaguchi, M. Shoji, J. Org. Chem.
2002, 67, 9443; for total syntheses by other research groups, see:
c) S. Marumoto, H. Kogen, S. Naruto, J. Org. Chem. 1998, 63,
2068; d) S. Marumoto, H. Kogen, S. Naruto, Tetrahedron 1999,
55, 7129; e) S. Marumoto, H. Kogen, S. Naruto, Tetrahedron
1999, 55, 7145; f) K. Kuramochi, H. Itaya, S. Nagata, K.-i.
Takano, S. Kobayashi, Tetrahedron Lett. 1999, 40, 7367; g) K.
Kuramochi, S. Nagata, H. Itaya, K.-i. Takano, S. Kobayashi,
Tetrahedron Lett. 1999, 40, 7371; h) K. Kuramochi, S. Nagata, H.
Itaya, Y. Matsubara, T. Sunoki, H. Uchiro, K.-i. Takao, S.
Kobayashi, Tetrahedron 2003, 59, 9743.
[9] Y. Nagumo, H. Kakeya, J. Yamaguchi, T. Uno, M. Shoji, Y.
Hayashi, H. Osada, Bioorg. Med. Chem. Lett. 2004, 14, 4425.
[10] Y. Mizushima, S. Kobayashi, K. Kuramochi, S. Nagata, F.
Sugawara, K. Sakaguchi, Biochem. Biophys. Res. Commun.
2000, 273, 784; b) J. Nakai, K. Kawada, S. Nagata, K. Kuramochi,
H. Uchiro, S. Kobayashi, M. Ikekita, Biochim. Biophys. Acta
2002, 1581, 1; c) K. Kuramochi, Y. Mizushima, S. Nagata, F.
Sugawara, K. Sakaguchi, S. Kobayashi, Bioorg. Med. Chem.
2004, 12, 1983.
Scheme 7. Possible racemization mechanism in the biosynthesis of
lucilactaene.
2-hydroxypyrrole derivative, which could undergo epoxida-
tion and isomerization. Racemization could occur via the
achiral pyrrole tautomer. A subsequent Michael reaction
would then afford racemic lucilactaene (1).
In summary, the labile natural product lucilactaene (1),
which readily undergoes racemization, has been synthesized
for the first time in optically pure form via a biomimetic
pathway. The conditions under which racemization occurs
were elucidated during this total synthesis. The careful
isolation of lucilactaene (1) from both the broth and the
mycelia under neutral, nonracemizing conditions demon-
strated that the isolable natural product is in fact itself
racemic. This total synthesis, which enabled verification of the
absolute configuration of 1, has several noteworthy features:
All the reactions from NG-391 (2) are mild enough not to
[11] The determination of the stereostructure of 7 is described in the
Supporting Information.
[12] J. M. Concellon, E. Bardales, Org. Lett. 2002, 4, 189.
[13] J. E. Baldwin, R. M. Adlington, M. B. Mitchell, J. Robertson,
Tetrahedron 1991, 47, 5901.
[14] A. Ishii, S. Matsubayashi, T. Takahashi, J. Nakayama, J. Org.
Chem. 1999, 64, 1084.
3114
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 3110 –3115