T. K. Chakraborty, G. Sudhakar / Tetrahedron Letters 46 (2005) 4287–4290
4289
Jayaprakash, S.; Ghosh, S. Comb. Chem. High Throughput
Screening 2002, 5, 373–387; (e) Schweizer, F. Angew.
Chem., Int. Ed. 2002, 41, 230–253; (f) Peri, F.; Cipolla, L.;
Forni, E.; La Ferla, B.; Nicotra, F. Chemtracts Org.
Chem. 2001, 14, 481–499.
same as in
BocHN
+
+
D-alanine
D-alanine
14
8
CO2Me
CO2Me
O
Schemes 1-3
Me
Me
5
2. (a) Raunkjær, M.; El Oualid, F.; van der Marel, G. A.;
Overkleeft, H. S.; Overhand, M. Org. Lett. 2004, 6, 3167–
3170; (b) Mazur, A. W.; Kulesza, A.; Mishra, R. A.;
Cross-Doersen, D.; Russell, A. F.; Ebetino, F. H. Bioorg.
Med. Chem. 2003, 11, 3053–3063; (c) Kulesza, A.; Ebetino,
F. H.; Mishra, R. K.; Cross-Doersen, D.; Mazur, A. W.
Org. Lett. 2003, 5, 1163–1166; (d) Vescovi, A.; Knoll, A.;
Koert, U. Org. Biomol. Chem. 2003, 2983–2997; (e)
Schrey, A.; Vescovi, A.; Knoll, A.; Rickert, C.; Koert,
U. Angew. Chem., Int. Ed. 2000, 39, 900–902; (f) Schrey,
A.; Osterkamp, F.; Straudi, A.; Rickert, C.; Wagner, H.;
Koert, U.; Herrschaft, B.; Harms, K. Eur. J. Org. Chem.
1999, 2977–2990.
same as in
BocHN
O
Schemes 1-3
6
Scheme 4. Synthesis of 5 and 6.
Similarly, starting from D-alanine and following the
methods outlined in Schemes 1–3, the two other isomers
of this C6-substituted 3,4-dideoxy furanoid sugar amino
acid 512 and 613 were prepared as shown in Scheme 4.
3. Chakraborty, T. K.; Sudhakar, G. Tetrahedron: Asymme-
try 2005, 16, 7–9.
4. Synthesis of 1 is already reported in Ref. 3.
5. Takahashi, T.; Miyazawa, M.; Tsuji, J. Tetrahedron Lett.
1985, 26, 5139–5142.
Compounds 5 and 6 are enantiomers of 1 and 3, respec-
tively, having identical spectral data. The enantiomeric
purities of these substrates were verified by measuring
their specific rotations. In addition to the specific rota-
tions of the final esters, they were also compared at
the alcohol stage. Thus the intermediate 17 from 9,
en route to 1, had a specific rotation equal, but opposite
to that of intermediate 19 obtained during the synthesis
of 5. Similarly, the alcohol 18 prepared from 15,
en route to 3, had an equal and opposite specific
rotation to that of 20, the precursor of 6.
6. All new compounds were characterized by standard
spectroscopic methods.
7. Maezaki, N.; Kojima, N.; Asai, M.; Tominaga, H.;
Tanaka, T. Org. Lett. 2002, 4, 2977–2980.
8. Selected physical data of 2: Rf = 0.4 (silica gel, 30% EtOAc
28
in petroleum ether); ½aꢁD ꢀ8.25 (c 0.54, CHCl3); IR (neat)
m
max 3365, 2974, 2927, 1743, 1711 cmꢀ1; 1H NMR (CDCl3,
300 MHz): d 5.88 (d, J = 8.3 Hz, 1H, NH), 4.46 (dd,
J = 3.2, 9.0 Hz, 1H, C2H), 4.01 (m, 1H, C5H), 3.77 (s, 3H,
CO2Me), 3.72 (m, 1H, C6H), 2.26 (m, 1H), 2.11 (m, 1H),
1.88 (m, 1H), 1.77 (m, 1H), 1.44 (s, 9H, Boc), 1.26 (d,
J = 6.7 Hz, 3H, CH3); 13C (CDCl3, 75 MHz): d 174.29,
156.16, 84.39, 78.74, 76.57, 52.13, 48.01, 30.89, 28.45,
27.18, 19.75; MS (LSIMS) m/z (%) 273 (4) [M]+, 174 (20)
[M+HꢀBoc]+.
R
R
R
6
S
BocHN
BocHN
6
OH
OH
2
2
S
S
5
Me
5
Me
O
O
1
1
17
18
[ ]26D =—27.8 (c 0.39, CHCl3)3
25
α
—
[
α
]
=
11.7 (c 2.25, CHCl3)
D
9. (a) Abushanab, E.; Vemishetti, P.; Leiby, R. W.; Singh, H.
K.; Mikkilineni, A. B.; Wu, D. C.-J.; Saibaba, R.; Panzica,
R. B. J. Org. Chem. 1988, 53, 2598–2602; (b) Hubschw-
erlen, C. Synthesis 1986, 962–964; (c) Takano, S.; Numata,
H.; Ogasawara, K. Heterocycles 1982, 19, 327–328; (d)
Jackson, D. Y. Synth. Commun. 1988, 18, 337–341.
10. Selected physical data of 3: Rf = 0.4 (silica gel, 30% EtOAc
S
S
S
R
BocHN
BocHN
6
6
OH
OH
2
2
R
5
Me
R
5
Me
O
O
1
1
19
20
[ ]26D = —+27.6 (c 1.6, CHCl3)
[ ] D = +12.5 (c 5.44, CHCl3)
α 25
α
Thus, the present method, as depicted in Scheme 1–3,
was employed successfully for the synthesis of various
isomers of C6-substituted 3,4-dideoxyfuranoid sugar
amino acids 1–6 in pure enantiomeric forms simply by
altering the chiralities of the starting amino aldehydes
and glyceraldehyde acetonides, but essentially following
a common strategy.
29
in petroleum ether); ½aꢁD ꢀ20.1 (c 1.07, CHCl3); IR (neat)
m
max 3350, 2977, 1745, 1709, 1172 cmꢀ1; 1H NMR (CDCl3,
300 MHz): d 5.01 (d, J = 5.2 Hz, 1H, NH), 4.42 (dd,
J = 4.7, 8.3 Hz, 1H, C2H), 3.93 (m, 1H, C5H), 3.75 (m,
1H, C6H), 3.73 (s, 3H, CO2Me), 2.21 (m, 1H), 2.07 (m,
1H), 1.93 (m, 1H), 1.81 (m, 1H), 1.43 (s, 9H, Boc), 1.19 (d,
J = 6.6 Hz, 3H, CH3); 13C (CDCl3, 75 MHz): d 173.49,
155.72, 84.09, 79.07, 76.57, 51.99, 48.89, 30.23, 28.41,
26.99, 16.27; MS (LSIMS) m/z (%) 274 (10) [M+H]+, 174
(91) [M+HꢀBoc]+.
Acknowledgements
11. Selected physical data of 4: Rf = 0.4 (silica gel, 30% EtOAc
in petroleum ether); IR (neat) mmax 3395, 2975, 2928, 1712,
We thank CSIR, New Delhi, for research fellowship
(G.S.) and DST, New Delhi, for financial assistance.
1171 cmꢀ1
;
1H NMR (CDCl3, 300 MHz): d 5.0 (d,
J = 4.5 Hz, 1H, NH), 4.5 (dd, J = 4.5, 7.8 Hz, 1H, C2H),
4.1 (m, 1H, C5H), 3.94 (m, 1H, C6H), 3.74 (s, 3H,
CO2Me), 2.22 (m, 1H), 2.02 (m, 2H), 1.78 (m, 1H), 1.43 (s,
9H, Boc), 1.2 (d, J = 6.8 Hz, 3H, CH3); MS (EI) m/z (%)
173 (5) [MꢀBoc]+.
References and notes
1. For reviews on sugar amino acids see: (a) Chakraborty, T.
K.; Srinivasu, P.; Tapadar, S.; Mohan, B. K. J. Chem. Sci.
2004, 116, 187–207; (b) Gruner, S. A. W.; Locardi, E.;
Lohof, E.; Kessler, H. Chem. Rev. 2002, 102, 491–514; (c)
Chakraborty, T. K.; Ghosh, S.; Jayaprakash, S. Curr.
Med. Chem. 2002, 9, 421–435; (d) Chakraborty, T. K.;
12. Selected physical data of 5: Rf = 0.4 (silica gel, 30% EtOAc
29
in petroleum ether); ½aꢁD +9.9 (c 1.01, CHCl3); IR (neat)
m
max 3371, 2976, 1745, 1709, 1170 cmꢀ1; 1H NMR (CDCl3,
300 MHz): d 4.63 (d, J = 7.9 Hz, 1H, NH), 4.49 (dd,
J = 4.9, 8.0 Hz, 1H, C2H), 4.1 (m, 1H, C5H), 3.72 (s, 3H,
CO2Me), 3.65 (m, 1H, C6H), 2.25 (m, 1H), 2.01 (m, 2H),