Copper(II)-Catalyzed Reactions of Dimethylformamide with Phenylacetonitrile and Sulfur
The Chemistry of Amides, (Ed.: J. Zabicky), Inter-
cleavage in this reaction. However, other possible
mechanisms cannot be excluded at this stage.
science, John Wiley and Sons, New York, London 1970,
p 96; c) K. A. Petrov, L. N. Andrew, Russ. Chem. Rev.
1971, 40, 505–524; d) Y. Tamaru, T. Harada, Z. Yoshi-
da, J. Am. Chem. Soc. 1978, 100, 1923–1925; e) H. Ta-
kahata, T. Yamazaki, Heterocycles 1988, 27, 1953–1973;
f) P. Metzner, Top. Curr. Chem. 1999, 204, 127–181.
[2] a) J. V. Metzger, Comprehensive Heterocyclic Chemis-
try, (Eds.: A. R. Katritzky, C. W. Rees), Pergamon,
Oxford, 1984, Vol. 6, pp 235–294; b) L. A. Damani,
Sulfur-containing Drugs and Related Organic Com-
pounds – Chemistry, Biochemistry and Toxicology, Ellis
Harwood, Chichester, U.K., 1989; c) R. J. Cremlyn, An
Introduction to Organosulfur Chemistry, John Wiley,
New York, 1996; d) T. S. Jagodzinski, Chem. Rev. 2003,
103, 197–227; e) V. Polshettiwar, M. P. J. Kaushik,
Sulfur Chem. 2006, 27, 353–386.
In summary, we have discovered a novel protocol
for generating N,N-dimethylthiobenzamide and N,N-
dimethyl-2-phenylethanethioamides, respectively, by
a one-pot procedure using phenylacetonitrile, sulfur
and DMF with or without addition of n-valeralde-
hyde. The relatively inexpensive copper catalyst and
solvent-free system in this reaction exhibits the ad-
vantages of this reaction. The high yields of up to
96% obtained in this method show promise for appli-
cations in organic synthesis. Mechanistic studies are
still underway in this laboratory.
Experimental Section
[3] For some examples, see: a) A. R. Todd, E. Bergel, A.
Jacob, J. Chem. Soc. 1936, 1555–1557; b) E. Klingsberg,
D. Papa, J. Am. Chem. Soc. 1951, 73, 4988–4989; c) S.
Raucher, P. Klein, J. Org. Chem. 1981, 46, 3558–3559;
d) T. J. Curphey, J. Org. Chem. 2002, 67, 6461–6473;
e) A. B. Charette, M. Grenon, J. Org. Chem. 2003, 68,
5792–5794; f) V. Polshettiwar, M. P. Kaushik, Tetrahe-
dron Lett. 2006, 47, 2315–2317; g) E. Aparna, K. M. Lo-
kanatharai, M. Sureshbabu, R. L. Jagadish, S. L. Gaon-
kar, J. Mater. Sci. 2006, 41, 1391–1393; h) U. Pathak,
L. K. Pandey, R. Tank, J. Org. Chem. 2008, 73, 2890–
2893; i) L. V. Bezgubenko, S. E. Pipko, A. D. Sinitsa,
Russ. J. Gen. Chem. 2008, 78, 1341–1344; j) D. Cho, J.
Ahn, K. A. Castro, H. Ahn, H. Rhee, Tetrahedron
2010, 66, 5583–5588; k) H. R. Lagiakos, A. Walker,
M. I. Aguilar, P. Perlmutter, Tetrahedron Lett. 2011, 52,
5131–5132.
Typical Procedure for the Preparation of N,N-
Dimethylthiobenzamide
CuACHTUNGTRENNUNG(acac)2 (26.1 mg, 0.1 mmol), K2CO3 (0.4 g, 3 mmol), ele-
mental sulfur (96 mg, 3 mmol), phenylacetonitrile (117 mg,
1.0 mmol), and DMF (2 mL) were added to a Schlenk tube
(25 mL) equipped with a magnetic stirrer bar. The Schlenk
tube was then closed and the resulting mixture was stirred
at 1108C for 24 h. After cooling down to room temperature,
the reaction mixture was filtered with celite and washed
with CH2Cl2. The filtrate was evaporated under vacuum.
The residue was purified by silica gel column chromatogra-
phy with petroleum ether/EtOAc (4:1) to give the product
as a dark green solid; yield: 147 mg (89%).
Typical Procedure for the Synthesis of N,N-Dimethyl-
[4] a) S. Scheibye, B. S. Pedersen, S. O. Lawesson, Bull.
Soc. Chim. Belges 1978, 87, 229–238; b) Z. Kaleta, B. T.
Makowski, T. Soꢂs, R. Dembinski, Org. Lett. 2006, 8,
1625–1628; c) Z. Kaleta, G. Tꢃrkꢃnyi, ꢄ. Gçmçry, F.
Kꢃlmꢃn, T. Nagy, T. Soꢂs, Org. Lett. 2006, 8, 1093–
1095; d) T. Hori, Y. Otani, M. Kawahata, K. Yamagu-
chi, T. Ohwada, J. Org. Chem. 2008, 73, 9102–9108.
[5] a) F. Asinger, W. Schafer, K. Halcour, A. Saw, H.
Triem, Angew. Chem. 1963, 75, 1050–1059; Angew.
Chem. Int. Ed. Engl. 1964, 3, 19–28; b) M. Carmack,
M. A. Spielman, Org. React. 1946, 3, 83–107; c) E. V.
Brown, Synthesis 1975, 358–375; d) Q. D. You, H. Y.
Zhou, Q. Wang, X. H. Lei, Org. Prep. Proced. Int. 1991,
23, 435–438; e) M. Nooshabadi, K. Aghapoor, H. R.
Darabi, M. M. Mojtahedi, Tetrahedron Lett. 1999, 40,
7549–7552; f) S. P. Pathare, P. S. Chaudhari, K. G.
Akaanchi, Appl. Catal. A: General 2012, 425–426, 125–
129.
2-phenylethanethioamides
CuACHTUNGTRENNUNG(acac)2 (26.1 mg, 0.1 mmol), K2CO3 (0.4 g, 3 mmol), ele-
mental sulfur (96 mg, 3 mmol), phenylacetonitrile (117 mg,
1.0 mmol), n-C4H9CHO (86 mg, 1 mmol) and DMF (2 mL)
were added to a Schlenk tube (25 mL) equipped with a mag-
netic stirrer bar. The Schlenk tube was then closed and the
resulting mixture was stirred at 1108C for 24 h. After cool-
ing down to room temperature, the reaction mixture was fil-
tered with celite and washed with CH2Cl2. The filtrate was
evaporated under vacuum. The residue was purified by
silica gel column chromatography with petroleum ether/
EtOAc (4:1) to give product as a dark green solid; yield:
147 mg (82%).
Acknowledgements
[6] a) K. Kindler, Justus Liebigs Ann. Chem. 1923, 431,
187–230; b) H. Eilingsfeld, M. Seefelder, H. Weidinger,
Angew. Chem. 1960, 72, 836–845; c) F. S. Okumura, T.
Moritani, Bull. Chem. Soc. Jpn. 1967, 40, 2209; d) A. J.
Speziale, L. R. Smith, J. Org. Chem. 1963, 28, 3492–
3496; e) M. L. Boys, V. L. Downs, Synth. Commun.
2006, 36, 295–298.
[7] a) J. O. Amupitan, Synthesis 1983, 730; b) W. Schroth,
J. Andersch, Synthesis 1989, 202–204; c) D. A. Andro-
sov, M. L. Petrov, A. A. Shchipalkin, Russ. J. Org.
We appreciate the Natural Science Foundation of China (No.
21072132, 21272161, 21372163) and the Ministry of Educa-
tion of China (No. 20120181110050) for financial support.
References
[1] a) R. N. Hurd, G. DeLaMater, Chem. Rev. 1961, 61,
45–86; b) A. L. J. Beckwith, Synthesis of amides, in:
Adv. Synth. Catal. 2013, 355, 3141 – 3146
ꢁ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3145