Journal of the American Chemical Society
Communication
Men
́
age, S.; Hamelin, O.; Charnay, F.; Pec
́
aut, J.; Fontecave, M. Inorg.
cyclometalated iridium(III) complex 1 is distinguished by its
simplicity, as it just contains two achiral cyclometalating
phenylbenzoxazoles and two labile acetonitriles. The high
configurational stability of the octahedral iridium chiral center is
unexpected considering that labile ligands generally reduce the
activation barrier for isomerization. Beyond its conceptual
appeal, bis-cyclometalated octahedral iridium(III) complex 1
might be of high practical value, as it provides an excellent
substrate scope for the highly enantioselective Friedel−Crafts
addition of indoles to α,β-unsaturated 2-acyl imidazoles at low
catalyst loadings (0.25−2 mol %), while at the same time
catalyst 1 displays a high solvent tolerance, does not rely on
cryogenic temperatures, and can even be used under open flask
conditions.12 This high performance indicates the value of a
direct chirality transfer from the chiral metal to the coordinated
substrate. Investigations of reactive chiral-at-metal iridium(III)
complexes as catalysts for other asymmetric transformations are
underway in our laboratory.
Chem. 2003, 42, 4810−4816. For other contributions on octahedral
catalysts with exclusive chirality-at-metal, see: (b) Hamelin, O.;
Rimboud, M.; Pecaut, J.; Fontecave, M. Inorg. Chem. 2007, 46,
́
5354−5360. (c) Kawasaki, T.; Omine, T.; Sato, M.; Morishita, Y.; Soai,
K. Chem. Lett. 2007, 36, 30−31. (d) Ganzmann, C.; Gladysz, J. A.
Chem.Eur. J. 2008, 14, 5397−5400.
(5) (a) Chen, L.-A.; Xu, W.; Huang, B.; Ma, J.; Wang, L.; Xi, J.;
Harms, K.; Gong, L.; Meggers, E. J. Am. Chem. Soc. 2013, 135, 10598−
10601. (b) Chen, L.-A.; Tang, X.; Xi, J.; Xu, W.; Gong, L.; Meggers, E.
Angew. Chem., Int. Ed. 2013, 52, 14021−14025.
(6) For chiral octahedral iridium(III) complexes in asymmetric
catalysis, see: (a) Paredes, P.; Díez, J.; Gamasa, M. P. Organometallics
2008, 27, 2597−2607. (b) Owens, C. P.; Varela-Alvarez, A.;
Boyarskikh, V.; Musaev, D. G.; Davies, H. M. L.; Blakey, S. B.
Chem. Sci. 2013, 4, 2590−2596. (c) Carmona, D.; Ferrer, J.; García,
N.; Ramírez, P.; Lahoz, F. J.; García-Orduna, P.; Oro, L. A.
́
̃
Organometallics 2013, 32, 1609−1619.
(7) Helms, M.; Lin, Z.; Gong, L.; Harms, K.; Meggers, E. Eur. J. Inorg.
Chem. 2013, 4164−4172.
(8) Gong, L.; Wenzel, M.; Meggers, E. Acc. Chem. Res. 2013, 46,
2635−2644.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and chiral HPLC traces. This material is
■
(9) For the synthesis of nonracemic cyclometalated iridium(III)
S
complexes, see also: (a) Urban, R.; Kramer, R.; Mihan, S.; Polborn, K.;
̈
Wagner, B.; Beck, W. J. Organomet. Chem. 1996, 517, 191−200.
(b) Schaffner-Hamann, C.; von Zelewsky, A.; Barbieri, A.; Barigelletti,
F.; Muller, G.; Riehl, J. P.; Neels, A. J. Am. Chem. Soc. 2004, 126,
9339−9348. (c) Haberhauer, G.; Oeser, T.; Rominger, F. Chem.
Commun. 2005, 2799−2801. (d) Yang, L.; von Zelewsky, A.; Stoeckli-
Evans, H. Chem. Commun. 2005, 4155−4157. (e) Yang, L.; von
Zelewsky, A.; Nguyen, H. P.; Muller, G.; Labat, G.; Stoeckli-Evans, H.
Inorg. Chim. Acta 2009, 362, 3853−3856. (f) Chepelin, O.; Ujma, J.;
Wu, X.; Slawin, A. M. Z.; Pitak, M. B.; Coles, S. J.; Michel, J.; Jones, A.
C.; Barran, P. E.; Lusby, P. J. J. Am. Chem. Soc. 2012, 134, 19334−
19337. (g) Davies, D. L.; Singh, K.; Singh, S.; Villa-Marcos, B. Chem.
Commun. 2013, 49, 6546−6548.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We gratefully acknowledge funding from the German Research
Foundation (ME 1805/4-1) and the Philipps-Universitat
Marburg. H.H. thanks the China Scholarship Council for a
stipend.
■
(10) For catalytic enantioselective indole and pyrrole alkylations with
α,β-unsaturated 2-acyl imidazoles, see: (a) Evans, D. A.; Fandrick, K.
R.; Song, H.-J. J. Am. Chem. Soc. 2005, 127, 8942−8943. (b) Evans, D.
A.; Fandrick, K. R. Org. Lett. 2006, 8, 2249−2252. (c) Evans, D. A.;
Fandrick, K. R.; Song, H.-J.; Scheidt, K. A.; Xu, R. J. Am. Chem. Soc.
2007, 129, 10029−10041. (d) Boersma, A. J.; Feringa, B. L.; Roelfes,
G. Angew. Chem., Int. Ed. 2009, 48, 3346−3348.
̈
REFERENCES
■
(1) Walsh, P. J.; Kozlowski, M. C. Fundamentals of Asymmetric
Catalysis; University Science Books: Sausalito, CA, 2009.
(11) 1H NMR spectra recorded in CD2Cl2 at room temperature after
the addition of 2-acyl imidazole 6a to catalyst Λ-1 support the fast
bidentate coordination of 6a to the catalyst upon release of the two
labile acetonitrile ligands (see Supporting Information).
(2) For reviews on all aspects of chiral transition metal complexes,
see: (a) Pierre, J.-L. Coord. Chem. Rev. 1998, 178−180, 1183−1192.
(b) Knof, U.; von Zelewsky, A. Angew. Chem., Int. Ed. 1999, 38, 302−
322. (c) Brunner, H. Angew. Chem., Int. Ed. 1999, 38, 1195−1208.
(d) von Zelewsky, A.; Mamula, O. Dalton Trans. 2000, 219−231.
(e) Ganter, C. Dalton Trans. 2001, 3541−3548. (f) Knight, P. D.;
Scott, P. Coord. Chem. Rev. 2003, 242, 125−143. (g) Ganter, C. Chem.
Soc. Rev. 2003, 32, 130−138. (h) Lacour, J.; Hebbe-Viton, V. Chem.
(12) 2-Acyl imidazoles can be converted to a wide variety of carbonyl
compounds. See ref 10c and also: (a) Ohta, S.; Hayakawa, S.;
Nishimura, K.; Okamoto, M. Chem. Pharm. Bull. 1987, 35, 1058−
1069. (b) Miyashita, A.; Suzuki, Y.; Nagasaki, I.; Ishiguro, C.; Iwamoto,
K.; Higashino, T. Chem. Pharm. Bull. 1997, 45, 1254−1258.
́
Soc. Rev. 2003, 32, 373−382. (i) Fontecave, M.; Hamelin, O.; Menage,
S. Top. Organomet. Chem. 2005, 15, 271−288. (j) Amouri, H.;
Gruselle, M. Chirality in Transition Metal Chemistry: Molecules,
Supramolecular Assemblies and Materials; Wiley: Chichester, U.K.,
2008. (k) Lacour, J.; Moraleda, D. Chem. Commun. 2009, 7073−7089.
(l) Meggers, E. Eur. J. Inorg. Chem. 2011, 2911−2926. (m) Bauer, E. B.
Chem. Soc. Rev. 2012, 41, 3153−3167. (n) Crassous, J. Chem. Commun.
2012, 48, 9684−9692. (o) Constable, E. C. Chem. Soc. Rev. 2013, 42,
1637−1651.
(3) It is noteworthy that chiral coordinating ligands may induce
metal-centered chirality within asymmetric catalysts. See, for example:
(a) Ohta, T.; Takaya, H.; Noyori, R. Inorg. Chem. 1988, 27, 566−569.
(b) Ashby, M. T.; Khan, M. A.; Halpern, J. Organometallics 1991, 10,
2011−2015.
(4) In pioneering work, Fontecave and co-workers demonstrated that
Λ- and Δ-[Ru(2,9-dimethyl-1,10-phenanthroline)(MeCN)2](PF6)2
serve as catalysts for the enantioselective oxidation of sulfides to
their sulfoxides, albeit with very low ee values. See: (a) Chavarot, M.;
2993
dx.doi.org/10.1021/ja4132505 | J. Am. Chem. Soc. 2014, 136, 2990−2993