C O M M U N I C A T I O N S
Supporting Information Available: Synthetic, spectroscopic, and
crystallographic data, and computational details (PDF, CIF). This
References
(1) (a) Wallar, B. J.; Lipscomb, J. D. Chem. ReV. 1996, 96, 2625. (b) Solomon,
E. I.; Brunold, T. C.; Davis, M. I.; Kemsley, J. N.; Lee, S. K.; Lehnert,
N.; Neese, F.; Skulan, A. J.; Yang, Y. S.; Zhou, J. Chem. ReV. 2000, 100,
235.
(2) (a) Kurtz, D. M. Chem. ReV. 1990, 90, 585 and references therein. (b)
Tshuva, E. Y.; Lippard, S. J. Chem. ReV. 2004, 104, 987.
(3) Reviews and recent examples: (a) Fontecave, M.; Me´nage, S.; Duboc-
Toia, C. Coord. Chem. ReV. 1998, 178-180, 1555. (b) Du Bois, J.;
Mizoguchi, T. J.; Lippard, S. J. Coord. Chem. ReV. 2000, 200-202, 443.
(c) Costas, M.; Chen, K. C.; Que, L. Coord. Chem. ReV. 2000, 200-202,
517. (d) Liu, C.; Yu, S.; Li, D.; Liao, Z.; Sun, X.; Xu, H. Inorg. Chem.
2002, 41, 913. (e) Tshuva, E. Y.; Lee, D.; Bu, W.; Lippard, S. J. J. Am.
Chem. Soc. 2002, 124, 2416. (f) Tolman, W. B.; Que, L. J. Chem. Soc.,
Dalton Trans. 2002, 5, 653. (g) Raffard-Pons y Moll, N.; Banse, F.; Miki,
K.; Nierlich, M.; Girerd, J. Eur. J. Inorg. Chem. 2002, 8, 1941. (h) Marlin,
D. S.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 2003, 42, 1681.
(4) (a) Arena, F.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Chem. Soc.,
Chem. Commun. 1986, 1369. (b) Cohen, J. D.; Payne, S. C.; Hagen, K.
C.; Sanders-Loehr, J. J. Am. Chem. Soc. 1997, 119, 2960. (c) Payne, S.
C.; Hagen, K. S. J. Am. Chem. Soc. 2000, 122, 6399.
(5) (a) Hartman, J. R.; Rardin, R. L.; Chaudhuri, P.; Pohl, K.; Wieghardt, K.;
Nuber, B.; Weiss, J.; Papaefthymiou, G. C.; Frankel, R. B.; Lippard, S. J.
J. Am. Chem. Soc. 1987, 109, 7387. (b) Feig, A. L.; Masschelein, A.;
Bakac, A.; Lippard, S. J. J. Am. Chem. Soc. 1997, 119, 334. (c) Davydov,
R. M.; Me´nage, S.; Fontecave, M.; Gra¨slund; Ehrenberg, A. J. Biol. Inorg.
Chem. 1997, 2, 242. (d) Musie, G.; Lai, C.; Reibenspies, J. H.; Sumner,
L. W.; Darensbourg, M. Y. Inorg. Chem. 1998, 37, 4086. (e) Kiani, S.;
Tapper, A.; Staples, R. J.; Stavropoulos, P. J. Am. Chem. Soc. 2000, 122,
7503.
Figure 3. Mo¨ssbauer spectra of solid [LtBuFe]2O at 4.2 K, recorded in
zero field (A) and a parallel applied field of 4.0 T (B). The solid line in (B)
is a computer simulation for ∆EQ ) (eQVzz/12)[(1 + (η2/3)]1/2 ) + 1.42
mm/s, η ) 0, δ ) 0.64 mm/s, and Beff,x ) (1 + Rx)B for Rx ) 0.2; details
are given in the Supporting Information. Absorption from a contaminant
with broad, unresolved features (ca. 20%) is indicated by arrows.17
We have recorded Mo¨ssbauer spectra for two solid samples and
for a toluene sample at temperatures from 4.2 to 150 K and applied
fields, B, up to 7.0 T. The applied-field spectra have shapes very
similar to those observed for diamagnetic compounds.18 However,
at all temperatures and for all fields, in the solid as well as in the
frozen solution, the magnetic splitting of the low-energy features
is slightly larger than accounted for by the applied field (see Figure
S-1, Supporting Information). The applied-field spectra yield ∆EQ
> 0 and a small asymmetry parameter, 0 e η e 0.4. Within the
resolution, the splitting of the low-field features can be modeled
by adding a positiVe magnetic hyperfine field, Bint, perpendicular
to the largest component of the electric field gradient, Vzz. Our
simulations reveal that Bint is proportional to the applied field, Bint
) RB, but independent of temperature up to 150 K. The simulation
in Figure 3B assumes that the effective field along x is given by
Beff,x ) (1 + Rx)B, with Rx ≈ +0.2 and Ry ) Rz ) 0 (see Supporting
Information for details). The observation of a positive and tem-
perature-independent Rx suggests substantial unquenched orbital
angular momentum, as observed by us in other three-coordinate
iron(II) complexes.16
Room-temperature 1H NMR spectra of [LtBuFe]2O in C6D6 exhibit
only seven paramagnetically shifted resonances, with relative
intensities as expected for the coordinated diketiminate ligands.19
This shows that the diketiminate ligands are equivalent on the NMR
time scale at room temperature, and the molecule has averaged D2h
or D2d symmetry. The observation of equivalent Fe sites agrees
with the single high-spin iron(II) environment seen by Mo¨ssbauer
spectroscopy in frozen toluene solution.
(6) In one case, electrochemical experiments imply transient stability of an
oxoiiron(II) compound. See ref 5d.
(7) Smith, J. M.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 2003,
125, 15752.
(8) Synthetic and crystallographic details are in the Supporting Information.
(9) Smith, J. M.; Lachicotte, R. J.; Pittard, K. A.; Cundari, T. R.; Lukat-
Rodgers, G.; Rodgers, K. R.; Holland, P. L. J. Am. Chem. Soc. 2001,
123, 9222.
(10) (a) Smith, J. M.; Lachicotte, R. J.; Holland, P. L. Chem. Commun. 2001,
1542. (b) Smith, J. M.; Lachicotte, R. J.; Holland, P. L. Organometallics
2002, 21, 4808. (c) Sciarone, T. J. J.; Meetsma, A.; Hessen, B.; Teuben,
J. H. Chem. Commun. 2002, 1580. (d) Vela, J.; Smith, J. M.; Lachicotte,
R. J.; Holland, P. L. Chem. Commun. 2002, 2886. (e) Gibson, V. C.;
Marshall, E. L.; Navarro-Llobet, D.; White, A. J. P.; Williams, D. J. Dalton
Trans. 2002, 23, 4321. (f) Panda, A.; Stender, M.; Wright, R. J.; Olmstead,
M. M.; Klavins, P.; Power, P. P. Inorg. Chem. 2002, 41, 3909. (g) Eckert,
N. A.; Smith, J. M.; Lachicotte, R. J.; Holland, P. L. Inorg. Chem. 2004,
43, 3306. (h) Vela, J.; Stoian, S.; Flaschenriem, C. J.; Mu¨nck, E.; Holland,
P. L. J. Am. Chem. Soc. 2004, 126, 4522.
(11) Allen, F. H. Acta Crystallogr. 2002, B58, 380. A search of the Cambridge
Structural Database provided 194 examples of crystallographically
characterized compounds containing an unsupported Fe-O-Fe unit (i.e.
no other bridging ligands). Only diiron compounds were included, and
all the compounds found in the search were diiron(III). Histograms of
the search results are included in the Supporting Information.
(12) Values given are for four-coordinate iron, the lowest coordination number
for which values are available. Shannon, R. D. Acta Crystallogr. 1976,
A32, 751.
(13) (a) Kitajima, N.; Tamura, N.; Tanaka, M.; Moro-oka, Y. Inorg. Chem.
1992, 31, 3342. (b) Lachicotte, R. J.; Kitaygorodskiy, A.; Hagen, K. S. J.
Am. Chem. Soc. 1993, 115, 8883. (c) Lee, D.; Pierce, B.; Krebs, C.;
Hendrich, M. P.; Huynh, B. H.; Lippard, S. J. J. Am. Chem. Soc. 2002,
124, 3993. (d) Stubna, A.; Jo, D.-H.; Costas, M.; Brenessel, W. W.;
Andres, H.; Bominaar, E. L.; Mu¨nck, E.; Que, L. Inorg. Chem. 2004, 43,
3067.
(14) Sanders-Loehr, J.; Wheeler, W. D.; Shiemke, A. K.; Averill, B. A.; Loehr,
T. M. J. Am. Chem. Soc. 1989, 111, 8084.
(15) This surprising difference in isomer shift (δ) implies that 1 has a different
In conclusion, we have synthesized and characterized a stable
oxodiiron(II) complex. It contains two identical high-spin, three-
coordinate Fe(II) centers supported by bulky diketiminate ligands.
Further studies on the reactivity, electronic structure, and magnetic
properties of this interesting complex are underway.
conformation in solution. See Supporting Information for details.
(16) Andres, H.; Bominaar, E. L.; Smith, J. M.; Eckert, N. A.; Holland, P. L.;
Mu¨nck, E. J. Am. Chem. Soc. 2002, 124, 3012.
(17) Our samples are prepared in a glovebox, and the sample holders are sealed
with a shrink fit cap (Delrin over brass). However, the intensity of the
contaminant signals increases over weeks during storage in liquid N2.
(18) Antiferromagnetic coupling of the ferrous ions in [LtBuFe]2O is supported
by density functional theory calculations (see Supporting Information)
that indicate an exchange coupling J ≈ 200-250 cm-1 (with H ) JS1‚
S2), in accord with a nearly linear Fe-O-Fe superexchange pathway.
Acknowledgment. The authors thank the National Science
Foundation (CHE-0134658, P.L.H.; MCB-0424494, E.M.), the
University of Rochester (Weissberger Memorial Fellowship, N.A.E.),
and the A. P. Sloan Foundation (P.L.H.) for funding, and Profs. K.
R. Rodgers and G. Lukat-Rodgers for resonance Raman measure-
ments.
(19) The two methyl groups of the ligand isopropyl groups are inequivalent
due to hindered rotation of the aryl moiety. See ref 10f and Supporting
Information.
JA0436704
9
J. AM. CHEM. SOC. VOL. 127, NO. 26, 2005 9345