S.-H. Kim et al. / Bioorg. Med. Chem. Lett. 15 (2005) 1101–1106
1105
Staples, D. J.; Baldwin, E. T.; Finzel, B. C. J. Med. Chem.
1999, 42, 1525.
References and notes
11. Wang, B. C.; Craven, B. M. J. Chem. Soc., Chem.
Commun. 1971, 7, 290. An X-ray structure of a barbituric
acid–Zn(II) inorganic complex.
12. The calculations of zinc–barbituric (BA) interaction,
target synthesis, and in vitro evaluation were carried
out prior to the public disclosure of X-ray crystal
structures of barbituric acid bound to MMPs (Ref. 10d
and e).
13. AM1: Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.;
Stewart, J. P. J. Am. Chem. Soc. 1985, 107, 3902.
14. Lovejoy, B.; Welch, A. R.; Carr, S.; Luong, C.; Broka, C.;
Hendricks, T.; Campbell, J. A.; Walker, K. A. M.; Martin,
R.; Wart, H. V.; Browner, M. F. Nat. Struct. Biol. 1999, 6,
217.
1. (a) Johnson, L. L.; Dyer, R.; Hupe, D. J. Curr. Opin.
Chem. Biol. 1998, 2, 466; (b) Shapiro, S. D. Curr. Opin.
Chem. Biol. 1998, 10, 602; (c) Whittaker, M.; Floyd, C. D.;
Brown, P.; Gearing, J. H. Chem. Rev. 1999, 9, 2735; (d)
Nagase, H.; Woessner, J. F., Jr. J. Biol. Chem. 1999, 274,
21491.
2. (a) Firestein, G. S.; Paine, M. M.; Littman, B. H.
Arthritis Rheum. 1992, 34, 1094; (b) Walakovits, L. A.;
Bhardwaj, N.; Gallick, G. S.; Lark, M. W.; Clark, I. M.
Arthritis Rheum. 1992, 35, 35; (c) Clark, I. M.; Rowan, A.
D.; Cawston, T. E. Curr. Opin. Anti-Inflam. Immunomod.
Invest. Drugs 2000, 2, 16; (d) Bottomley, K. M.;
Johnson, W. H.; Walter, D. S. J. Enzyme Inhib. 1998,
13, 79; (e) Yip, D.; Ahmad, A.; Karapetis, C. S.;
Hawkins, C. A.; Harper, P. G. Invest. New Drugs 1999,
17, 387.
15. The overlap of calculated structure in Figure 2 versus
reported barbiturate MMP inhibitor structures is very
˚
˚
good. The calculated zinc–nitrogen distance is 2.09 A,
˚
3. Freemont, A. J.; Byers, R. J.; Taiwo, Y. O.; Hoyland, J. A.
Ann. Rheum. Dis. 1999, 58, 357.
which is in line with the distances of 2.09 A and 2.17 A
found for zinc–nitrogen bond (Ref. 10d and e, respec-
4. (a) Neuhold, L. A.; Killar, L.; Zhao, W.; Sung, M.;
Warner, L.; Kulik, J.; Turner, J.; Wu, W.; Billinghurst, C.;
Meijers, T.; Poole, A. R.; Babij, P.; DeGennaro, L. J.
J. Clin. Invest. 2001, 1, 35; (b) Konttinen, Y. T.; Ainola,
M.; Valleala, H.; Ma, J.; Ida, H.; Mandelin, J.; Kinne, R.
W.; Santavirta, S.; Sorsa, T.; Lopez-Otin, C.; Takagi, M.
Ann. Rheum. Dis. 1999, 58, 691.
5. For an excellent review on the design and application of
matrix metalloproteinase inhibitors see Skiles, J. W.;
Gonnella, N. C.; Jeng, A. Y. Curr. Med. Chem. 2001, 8,
425.
6. (a) Skotnicki, J. S.; Levin, J. I.; Zask, A.; Killar, L. M. In
Metalloproteinases as Targets for Anti-Inflamma-
tory Drugs; Bottomley, K. M. K., Bradshaw, D.,
Nixon, J. S., Eds.; Birkhauser: Basel, 1999; pp 17–57; (b)
Clark, I.; Parker, A. E. Exp. Opin. Ther. Targets 2003, 7,
19.
7. Campbell, J. A. Book of Abstracts, 216th ACS National
Meeting of the American Chemical Society, 1998.
8. (a) Bender, S. Lecture at the Second Winter Conference on
Medicinal Chemistry, Steamboat Springs, CO, Jan 26–31,
1997; (b) Tamura, Y.; Watanabe, F.; Nakatani, T.; Yasui,
K.; Fuji, M.; Komurasaki, T.; Tsuzuki, H.; Maekawa, R.;
Yoshioka, T.; Kawada, K.; Sugita, K.; Ohtani, M. J. Med.
Chem. 1998, 41, 1749; (c) Whittaker, M.; Floyd, C. D.;
Brown, P.; Gearing, A. J. Chem. Rev. 1999, 99,
2735.
˚
tively). The reported zinc–oxygen distances of 2.9 A
˚
(MMP-8, Ref. 10d) and 3.0 A (Stromelysin, Ref. 10e)
are significantly longer than the zinc–oxygen distance of
1.9 A found in a hydroxamate/MMP structure.14 Interest-
˚
ingly an inorganic-complex containing of Zn(II) and
barbituric acid shows little evidence that it forms a
bidentate chelate.11 Thus it may not be necessary to
invoke a bidentate binding mode for the barbituric acid–
zinc interaction (penta-coordination around zinc). Impor-
tantly, there is a good agreement between the X-ray and
calculated structures which suggests that calculations may
play an important role in the design of new non-
hydroxamic acid based inhibitors of MMPs (see for
instance, Ref. 10e). Another consideration is the ioniza-
tion state of the barbituric acid. The calculation was
carried out using deprotonated barbituric acid, with the
ligand bearing a formal ꢀ1 charge. Calculations could
not produce a stable complex when the neutral barbitu-
rate forms were substituted (data not shown.) The pKa for
4a was experimentally determined to be 6.4( 0.2)
(spectrophotometric titration in water). Thus, the possi-
bility that the ionized specie is the catalytically active
form cannot be ruled out, however both Ref. 10d and e
suggest the barbituric acid is bound to MMPs in a neutral
form.
16. Cram, D. J.; Trueblood, K. N. In Host Guest Complex
Chemistry; Vogtle, E., Weber, E., Eds.; Springer: Berlin,
1985; pp 1–42.
9. Shaw, T.; Nixon, J. S.; Bottomley, K. M. Exp. Opin.
Invest. Drugs 2000, 9, 1469–1478.
17. (a) The available X-ray coordinates of 1 with MMP-1314
were used in the SYBYL program to arrive at binding site
descriptors, including MOL2MAP surface grids that provide
chemical probe interaction energy contours of the binding
site. As shown in Figure 3, a tris-imidazole complex was
used with the AM1 semiempirical SCF-MO methodology
to examine zinc–barbiturate interaction. The calculated
10. Barbituric acids: (a) Oliva, A.; De Cellis, G.; Grams, F.;
Livi, V.; Zimmermann, G.; Menta, E.; Krell, H. -W., PCT
Int. Appl. WO 9858925, Dec 30, 1998; (b) Grams, F.;
Mermann, G. PCT Int. Appl. WO 9858915, Dec 30, 1998;
(c) Foley, L. H.; Palermo, R.; Dunten, P.; Wang, P.
Bioorg. Med. Chem. Lett. 2001, 11, 969; (d) Brandstetter,
H.; Grams, F.; Glitz, D.; Lang, A.; Huber, R.; Bode, W.;
Krell, H.; Engh, R. A. J. Biol. Chem. 2001, 20, 17405; (e)
Dunten, P.; Kammloft, U.; Crother, W. L.; Foley, L. H.;
Wang, P.; Palermo, R. Protein Sci. 2001, 10, 923; (f) Other
heterocycles: Puerta, T. D.; Lewis, J. A.; Cohen, S. M.
J. Am. Chem. Soc. 2004, 126, 8388; (g) Jacobsen, E. J.;
Mitchell, M. A.; Hendges, S. K.; Belonga, K. L.;
Skaletzky, L. L.; Stelzer, L. S.; Lindberg, T. J.; Fritzen,
E. L.; Schostarez, H. J.; OÕSullivan, T. J.; Maggiora, L. L.;
Stuchly, C. W.; Laborde, A. L.; Kubicek, M. F.; Poor-
man, R. A.; Beck, J. M.; Miller, H. R.; Petzold, G. L.;
Scott, P. S.; Truesdell, S. E.; Wallace, T. L.; Wilks, J. W.;
Fisher, C.; Goodman, L. V.; Kaytes, P. S.; Ledbtter, S. R.;
Powers, E. A.; Vogeli, G.; Mott, J. e.; Trepod, C. M.;
˚
Zn–N barbiturate distance (2.09 A) and geometric con-
straints (monodentate nitrogen chelation, tetrahedral L–
Zn–L of 109.5°) were built into the Tripos molecular
mechanics force field (Tripos FF). Inhibitor modeling was
initiated with a SAM1 optimized structure of the inhibitor,
for example, 4a, inserted into the MMP-13 binding site.
The entire protein/inhibitor aggregate was then allowed to
relax for 1000 iterations of geometry optimization with the
Tripos force field, resulting in the structure shown in
Figure 4; (b )SYBYL: Tripos, Inc., 1699 S. Hanley Road, St.
Louis MO 63144-2913(c) MOL2MAP: MOL2MAP is a FOR-
TRAN program with SYBYL SPL interface (A. T. Pudzia-
nowski) based on the original GRID methodology: