1158
L.A. Paim et al. / Polyhedron 24 (2005) 1153–1159
[4] T.D. Burns, T.G. Spence, T.A. Mooney, L.A. Posey, Chem.
Phys. Lett. 258 (1996) 669.
sively the m/z 721 fragment via the SnCl3 radical loss
(spectrum not shown).
[5] R.M.S. Pereira, V.I. Paula, R. Buffon, D.M. Tomazela, M.N.
Eberlin, Inorg. Chim. Acta 357 (2004) 2100.
3.1. Detection of catalytically active species
[6] J. Griep-Raming, S. Meyer, T. Bruhn, J.O. Metzger, Angew.
Chem., Int. Ed. 41 (2002) 2738.
[7] R. Arakawa, S. Tachiyashiki, T. Matsuo, Anal. Chem. 67 (1995)
4133.
It has been verified that complexes 2 and 1 [34] as
well as similar heterotrimetallic Ru(II)–Sn(II) com-
plexes [35,36] and RuCl3–SnX2 composite systems [37]
are effective catalysts in the conversion of methanol
to acetic acid [38]. The mechanism of this reaction
has been studied [35,37,39,40] but is not yet fully
understood. Thus, taking into account that ESI is able
to transfer ions from solution to the gas phase [6,8,41–
44], and most importantly, the composition of ESI-gen-
erated ions often closely reflects that of the solution
[5,16,17,41,45,46], we hypothesize that cation 3,
undoubtedly detected in acetonitrile solutions of com-
plexes 2 and 1 (Scheme 1), could be the catalytically ac-
tive species in this conversion. This hypothesis is based
on several studies [47,48] describing the use of ESI-MS
to detect cationic species likely to be involved in cata-
lytic processes. For instance, Dyson and coworkers
[48] verified that in the electrospray ionization mass
spectrum of [Ru4 (g6-C6H6)4-(OH)4]4+, the main spe-
cies present in aqueous solution are the intact cubane
tetramer and the dimer [Ru2-(g6-C6H6)2(OH)2]2+ and
proposed that the latter is an active benzene hydroge-
nation catalyst.
[8] E.C. Meurer, A.A. Sabino, M.N. Eberlin, Anal. Chem. 75 (2003)
4701.
[9] D.V. Augusti, F. Carazza, A.A. Okuma, R. Augusti, Rapid
Commun. Mass Spectrom. 17 (2003) 1084.
[10] D.A. Plattner, Int. J. Mass Spectrom. 207 (2001) 125.
[11] R. Bertani, R. Seraglia, D. Favretto, R.A. Michelin, M. Mozzon,
S.M. Sbovata, A. Sassi, Inorg. Chim. Acta 356 (2003) 357.
[12] A.M. Bond, R. Colton, A. Dagostino, J. Harvey, J.C. Traeger,
Inorg. Chem. 32 (1993) 3952.
[13] T.J. Cardwell, R. Colton, N. Lambropoulos, J.C. Traeger, P.
Marriott, J. Anal. Chim. Acta 280 (1993) 239.
[14] T. Hayashi, M. Konishi, M. Kumada, J. Organomet. Chem. 186
(1980) C1.
[15] R. Colton, K.L. Harrison, Y.A. Mah, J.C. Traeger, Inorg. Chim.
Acta 231 (1995) 65.
[16] S.H. Toma, S. Nikolaou, D.M. Tomazela, M.N. Eberlin, H.E.
Toma, Inorg. Chim. Acta 357 (2004) 2253.
[17] S.H. Toma, M. Uemi, S. Nikolaou, D.M. Tomazela, M.N.
Eberlin, H.E. Toma, Inorg. Chem. 43 (2004) 3521.
[18] J.M. Slocik, K.V. Somayajula, R.E. Shepherd, Inorg. Chim. Acta
320 (2001) 148.
[19] S.P. Yeo, W. Henderson, T.C.W. Mak, T.S.A. Hor, J. Organo-
met. Chem. 575 (1999) 171.
[20] J.V. Iribarne, P.J. Dziedzic, B.A. Thomson, Int. J. Mass
Spectrom. 50 (1983) 331.
[21] C.M. Whitehouse, R.N. Dreyer, M. Yamashita, J.B. Fenn, Anal.
Chem. 57 (1985) 675.
[22] V. Katta, S.K. Chowdhury, B.T. Chait, J. Am. Chem. Soc. 112
(1990) 5348.
4. Conclusion
[23] R.D. Smith, C.J. Barinaga, H.R. Udseth, Anal. Chem. 60 (1988)
1948.
ESI proved to be a suitable and efficient technique for
the characterization of heterotrimetallic Ru(g5-
C5H5)(dppf)SnX3 (1) complexes, containing a Ru–Sn
bond, and their heterobimetallic Ru(g5-C5H5)(dppf)X
(2) precursors. The formation of cation 3, likely the cat-
alytically active species in the single step conversion of
methanol to acetic acid, from 2 and 1 seems to be a gen-
eral tendency for these ruthenium complexes.
[24] M. Yamashita, J.B. Fenn, J. Phys. Chem. A 88 (1984) 4451.
[25] L.A. Paim, E.M. Moura, H.G.L. Siebald, G.M. de Lima, A.C.
Doriguetto, J. Ellena, Spectrochim. Acta A 60 (2004) 2383.
[26] M.I. Bruce, I.R. Butler, W.R. Cullen, G.A. Koutsantonis, M.R.
Snow, E.R.T. Tiekink, Aust. J. Chem. 41 (1988) 963.
[27] E. de Hoffmann, V. Stroobant, Mass Spectrometry Princi-
ples and Applications, second ed., Wiley, Chichester, UK,
2002.
[28] Theoretical fits were carried out using the University of Sheffield
[29] G.J. Vanberkel, S.A. Mcluckey, G.L. Glish, Anal. Chem. 64
(1992) 1586.
Acknowledgments
[30] C.E.C.A. Hop, D.A. Saulys, D.F. Gaines, J. Am. Soc., Mass
Spectrom. 6 (1995) 860.
This work had financial support from FAPEMIG
`
(Fundac¸a˜o de Amparo a Pesquisa do Estado de Minas
Gerais, Brazil) and CNPq (Conselho Nacional de
´ ´
Desenvolvimento Cientıfico e Tecnologico, Brazil).
[31] G.J. Van Berkel, F. Zhou, Anal. Chem. 67 (1995) 3958.
[32] X.M. Xu, S.P. Nolan, R.B. Cole, Anal. Chem. 66 (1994) 119.
[33] C.E.C.A. Hop, J.T. Brady, R. Bakhtiar, J. Am. Soc. Mass
Spectrom. 8 (1997) 191.
[34] L.A. Paim, H.G.L. Siebald, Unpublished results.
[35] T. Yamakawa, M. Hiroi, S. Shinoda, J. Chem. Soc., Dalton
Trans. 15 (1994) 2265.
References
[36] P.A. Robles-Dutenhefner, E.M. Moura, G.J. Gama, H.G.L.
Siebald, E.V. Gusevskaya, J. Mol. Catal. A 164 (2000) 39.
[37] L.C. Yang, T. Yamakawa, S. Shinoda, J. Mol. Catal. A 130
(1998) 249.
[1] N.B. Cech, C.G. Enke, Mass Spectrom. Rev. 20 (2001) 362.
[2] R. Colton, A. DAgostino, J.C. Traeger, Mass Spectrom. Rev. 14
(1995) 79.
[38] S. Shinoda, T. Yamakawa, J. Chem. Soc., Chem. Commun.
(1990) 1511.
[3] T.G. Spence, T.D. Burns, G.B. Guckenberger, L.A. Posey, J.
Phys. Chem. A 101 (1997) 1081.