C O M M U N I C A T I O N S
Table 1. Epoxidation of Allylic Azides
slowly with less substituted olefins 3b and 11b, they appear to be
sufficiently long-lived to produce noticeable amounts of the
corresponding azidoepoxides 14b and 16b. In the secondary vs
tertiary azide series, azido alcohol 7 performed slightly better than
azide 5, which lacks a hydroxyl group.
In summary, an allylic azide’s existence as a dynamically
equilibrating mixture of all possible [3.3]-isomers can be manipu-
lated in interesting ways. By use of an appropriate capture trick, a
given [3.3]-rearrangement family of allylic isomers is uniquely
“siphoned off” through the isomer preferred by the “fixing” reaction.
In the cases at hand, the rearrangement process was terminated by
reactions selective for azide functionality and for olefin functional-
ity, respectively. Given the wealth of useful olefin reactions with
electrophiles and oxidants, allylic azides appear to offer many
worthwhile selectivity refinements, in the already wide world of
olefin transformations.
Acknowledgment. We thank the National Institute of General
Medical Sciences, the National Institutes of Health (GM-28384),
the W. M. Keck Foundation, and Pfizer Inc. for financial support.
B.C. thanks the French Ministe`re des Affaires Etrange`res for
Lavoisier fellowship. A.K.F. thanks the Skaggs Foundation for a
fellowship.
Supporting Information Available: Typical experimental proce-
dures and spectral characterization of all products. This material is
References
(1) Scriven, E. F. V.; Turnbull, K. Chem. ReV. 1988, 88, 297.
(2) (a) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67,
3057. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596.
(3) For representative applications of the Cu(I)-catalyzed azide-alkyne
cycloaddition, see: (a) Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.;
Sharpless, K. B.; Finn, M. G. J. Am. Chem. Soc. 2003, 125, 3192. (b)
Speers, A. E.; Adam, G. C.; Cravatt, B. F. J. Am. Chem. Soc. 2003, 125,
4686. (c) Anderson, J. C.; Schultz, P. G. J. Am. Chem. Soc. 2003, 125,
11782. (d) Link, A. J.; Tirrell, D. A. J. Am. Chem. Soc. 2003, 125, 11164.
(e) Collman, J. P.; Devaraj, N. K.; Chidsey, C. E. D. Langmuir 2004, 20,
1051. (f) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel,
A.; Voit, B.; Pyun, J.; Fre´chet, J. M. J.; Sharpless, K. B.; Fokin, V. V.
Angew. Chem., Int. Ed. 2004, 30, 3928.
(4) (a) Vander Werf, C. A.; Heisler, R. Y.; McEwen, W. E. J. Am. Chem.
Soc. 1954, 76, 1231. (b) Gagneux, A.; Winstein, S.; Young, W. G. J. Am.
Chem. Soc. 1960, 82, 5956. (c) Vander Werf, C. A.; Heasley, V. L. J.
Org. Chem. 1966, 31, 3534. (d) Padwa, A.; Sa´, M. M. Tetrahedron Lett.
1997, 38, 5087.
(5) (a) Panek, J. S.; Yang, M.; Muler, I. J. Org. Chem. 1992, 57, 4063. (b)
Chida, N.; Tobe, T.; Murai, K.; Yamazaki, K.; Ogawa, S. Heterocycles
1994, 38, 2383. (c) Maag, H.; Rydzewski, R. M. J. Org. Chem. 1992, 57,
5823. (d) Murahashi, S.-I.; Tanigawa, Y.; Imada, Y.; Taniguchi, Y.
Tetrahedron Lett. 1986, 27, 227. (e) Askin, D.; Angst, C.; Danishefsky,
S. J. Org. Chem. 1985, 50, 5005.
(6) (a) Rao, A. S.; Paknikar, K. S.; Kirtane, J. G. Tetrahedron 1983, 39, 2323.
(b) Fringuelli, F.; Germani, R.; Pizzo, F.; Savelli, G. Tetrahedron Lett.
1989, 30, 1427.
a Conditions A:6b MCPBA (1.1 equiv), H2O (0.3 M NaHCO3), room
temperature, 12 h. Conditions B: MCPBA (1.3 equiv), CH2Cl2, room
temperature, 12 h. b Isolated combined yields. c Reaction time was 48 h.
be sensitive to the electronic properties of the olefin,6b was chosen.
The epoxide product mixtures were analyzed by 1H NMR,13C NMR,
and GC. Table 1 summarizes the results.
In general, good to excellent selectivity was realized. Aqueous
conditions (A), which utilize buffered MCPBA, were preferred (see
Supporting Information for details). However, for azido alcohols
3, 7, and 11, nonaqueous conditions (B) were required to achieve
complete conversion to the corresponding azidoepoxides. In the
primary vs tertiary and primary vs secondary azide systems,
excellent selectivity was observed for compounds 1 and 9 (cf. entries
1 and 5). As expected, more substituted olefins reacted faster. The
more sluggish rearrangement rates noted with azido alcohols 3 and
11 appear to be due to the interplay of inductive electronic effects8
and hydrogen bonding effects.9 Although MCPBA reacts more
(7) Chan, T. R.; Holzer, P.; Fokin, V. V., unpublished results.
(8) Pegolotti, J. A.; Young, W. G. J. Am. Chem. Soc. 1961, 83, 3258.
(9) Trost, B. M.; Pulley, S. R. Tetrahedron Lett. 1995, 36, 8737.
JA050622Q
9
J. AM. CHEM. SOC. VOL. 127, NO. 39, 2005 13445