ORGANIC
LETTERS
2005
Vol. 7, No. 15
3159-3162
Concise Syntheses of
)-Macrosphelides A and B
(+
Seung-Mann Paek,† Seung-Yong Seo,† Seok-Ho Kim,† Jong-Wha Jung,†
Yong-Sil Lee,† Jae-Kyung Jung,‡ and Young-Ger Suh*,†
College of Pharmacy, Seoul National UniVersity, Seoul 151-742, Korea, and College
of Pharmacy, Chungbuk National UniVersity, Cheongju 361-763, Korea
Received April 17, 2005
ABSTRACT
Unified and highly convergent total syntheses of (
+
)-macrosphelides A and B are described. Key features of the syntheses include (1) concise
-unsaturated acid fragment via the direct addition of a trans-vinylogous ester anion
synthesis of the optically active -hydroxy- -keto r,â
δ
γ
equivalent to the readily available Weinreb amide and (2) facile construction of the 16-membered macrolide core of the macrosphelide series
via an intramolecular nitrile-oxide cycloaddition (INOC).
Macrosphelides, a class of macrolactone polyketides consist-
ing of several unique components, were isolated from the
culture broth of the fungus (Microsphaeropsis sp. FO-5050)
by the Omura group and from the strain Periconia byssoides,
separated from the sea hare Aplysia kurodai, by the Numata
group.1 These 16-membered macrolides, that contain novel
structures with three ester linkages, strongly inhibit the
adhesion of human leukemia HL-60 cells to human-umbili-
cal-vein endothelial cells (HUVEC) in a dose-dependent
fashion.1a Moreover, macrosphelide B exhibited potent
immunosupressant activity equal to that of rapamycin, and
its analogues might therefore serve as powerful new immu-
nomodulators.2
Taken together, these attributes have led to considerable
interest in macrosphelides as targets for research in organic
synthesis. Several groups have reported synthetic studies in
this regard,3-6 although all of the syntheses typically
employed the Yamaguchi protocol for macrolactone con-
struction, except for Takahashi’s carbonylative macrolac-
tonization7 and Nemoto’s ring-closing metathesis (RCM)
strategy.8 However, despite these synthetic efforts, some
(2) Omura, S.; Komiyama, K. PCT Int. Appl. WO 0147516 A1.
(3) Sunazuka, T.; Hirose, T.; Harigaya, Y.; Takamatsu, S.; Hayashi, M.;
Komiyama, K.; Omura, S.; Sprengeler, P. A.; Smith, A. B., III. J. Am. Chem.
Soc. 1997, 119, 10247-10248.
(4) (a) Kobayashi, Y.; Kumar, B. G.; Kurachi, T. Tetrahedron Lett. 2000,
41, 1559-1563. (b) Kobayashi, Y.; Kumar, G. B.; Kurachi, T.; Acharya,
H. P.; Yamazaki, T.; Kitazume, T. J. Org. Chem. 2001, 66, 2011-2018.
(c) Kobayashi, Y.; Acharya, H. P. Tetrahedron Lett. 2001, 42, 2817-2820.
(d) Kobayashi, Y.; Wang, Y.-G. Tetrahedron Lett. 2002, 43, 4381-4384.
(5) (a) Ono, M.; Nakamura, H.; Konno, F.; Akita, H. Tetrahedron:
Asymmetry 2000, 11, 2753-2764. (b) Nakamura, H.; Ono, M.; Shiba, Y.;
Akita, H. Tetrahedron: Asymmetry 2002, 13, 705-713. (c) Nakamura, H.;
Ono, M.; Makino, M.; Akita, H. Heterocycles 2002, 57, 327-336.
(6) Sharma, G. V. M.; Mouli, C. C. Tetrahedron Lett. 2002, 43, 9159-
9161.
† Seoul National University.
‡ Chungbuk National University.
(1) (a) Hayashi, M.; Kim, Y.-P.; Hiraoka, H.; Natori, M.; Takamatsu,
S.; Kawakubo, T.; Masuma, R.; Komiyama, K.; Omura, S. J. Antibiot. 1995,
48, 1435-1439. (b) Takamatsu, S.; Kim, Y.-P.; Hayashi, M.; Iraoka, H.;
Natori, M.; Komiyama, K.; Omura, S. J. Antibiot. 1996, 49, 95-98. (c)
Numata, A.; Iritani, M.; Yamada, T.; Minoura, K.; Matsumura, E.; Yamori,
T.; Tsuruo, T. Tetrahedron Lett. 1997, 38, 8215-8218. (d) Yamada, T.;
Iritani, M.; Doi, M.; Minoura, K.; Ito, T.; Numata, A. J. Chem. Soc., Perkin
Trans. 1 2001, 3046-3053. (e) Yamada, T.; Iritani, M.; Minoura, K.;
Numata, A.; Kobayashi, Y.; Wang, Y.-G. J. Antibiot. 2002, 55, 147-154.
(7) (a) Takahashi, T.; Kusaka, S.-i.; Doi, T.; Sunazuka, T.; Omura, S.
Angew. Chem., Int. Ed. 2003, 42, 5230-5234. (b) Kusaka, S.-I.; Dohi, S.;
Doi, T.; Takahashi, T. Tetrahedron Lett. 2003, 44, 8857-8859.
10.1021/ol0508429 CCC: $30.25
© 2005 American Chemical Society
Published on Web 06/18/2005