3444
M. W. Rowbottom et al. / Bioorg. Med. Chem. Lett. 15 (2005) 3439–3445
6. Shearman, L. P.; Camacho, R. E.; Stribling, D. S.; Zhou,
D.; Bednarek, M. A.; Hreniuk, D. L.; Feighner, S. D.;
Tan, C. P.; Howard, A. D.; Van der Ploeg, L. H. T.;
MacIntyre, D. E.; Hickey, G. J.; Strack, A. M. Eur. J.
Pharmacol. 2003, 475, 37.
7. (a) Takekawa, S.; Asami, A.; Ishihara, Y.; Terauchi, J.;
Kato, K.; Shimomura, Y.; Mori, M.; Murakoshi, H.;
Kato, K.; Suzuki, N.; Nishimura, O.; Fujino, M. Eur. J.
Pharmacol. 2002, 438, 129; (b) Borowsky, B.; Durkin, M.
M.; Ogozalek, K.; Marzabadi, M. R.; DeLeon, J.;
Heurich, R.; Lichtblau, H.; Shaposhnik, Z.; Daniewska,
I.; Blackburn, T. P.; Branchek, T. A.; Gerald, C.; Vaysse,
P. J.; Forray, C. Nat. Med. 2002, 8, 825.
8. (a) Kela, J.; Salmi, P.; Rimondini-Giorgini, R.; Heilig, M.;
Wahlestedt, C. Regul. Pept. 2003, 114, 109; (b) Kennedy,
A. R.; Todd, J. F.; Dhillo, W. S.; Seal, L. J.; Ghatei, M.
A.; OÕToole, C. P.; Jones, M.; Witty, D.; Winborne, K.;
Riley, G.; Hervieu, G.; Wilson, S.; Bloom, S. R. J.
Neuroendocrinol. 2003, 15, 268.
moved by hepatic first-pass metabolism in vivo. For in-
stance in an in vitro HLM assay,18 5-(4-ethylphenyl)-2-
thiophenecarboxamide derivative 35 (Table 3) had an
intrinsic clearance of 95 mL/min/kg, implying that this
compound is being rapidly metabolized. Other examples
proved to be much more stable to metabolism by HLM.
For instance, the 2-chloro-4-methylphenyl 41 and 2-
chloro-4-ethoxyphenyl 42 analogs (Table 3) had intrin-
sic clearance values of 19 and 6 mL/min/kg, respectively.
Inhibition of certain cytochrome P450 (CYP450) metab-
olizing enzymes (particularly CYP2D6 and CYP3A4)
may lead to undesirable drug–drug interactions in vivo.
The compounds described proved to be very weak inhib-
itors of both CYP2D6 and CYP3A4. For instance, in vi-
tro the aforementioned compounds 35, 41, and 42 all
had measured IC50 values >20 lM, against both
CYP2D6 and 3A4.19
9. (a) Carpenter, A. J.; Hertzog, D. L. Expert Opin. Ther.
Patents 2002, 12, 1639; (b) Collins, C. A.; Kym, P. R.
Curr. Opin. Investig. Drugs 2003, 4, 386; (c) Clark, D. E.;
Higgs, C.; Wren, S. P.; Dyke, H. J.; Wong, M.; Norman,
D.; Lockey, P. M.; Roach, A. G. J. Med. Chem. 2004,
47, 3962; (d) Arienzo, R.; Clark, D. E.; Cramp, S.; Daly,
S.; Dyke, H. J.; Lockey, P.; Norman, D.; Roach, A. G.;
Stuttle, K.; Tomlinson, M.; Wong, M.; Wren, S. P.
Bioorg. Med. Chem. Lett. 2004, 14, 4099; (e) Souers, A.
J.; Wodka, D.; Gao, J.; Lewis, J. C.; Vasudevan, A.;
Gentles, R.; Brodjian, S.; Dayton, B.; Ogiela, C. A.; Fry,
D.; Hernandez, L. E.; Marsh, K. C.; Collins, C. A.;
Kym, P. R. Bioorg. Med. Chem. Lett 2004, 14, 4873; (f)
Vasudevan, A.; Wodka, D.; Verzal, M. K.; Souers, A. J.;
Gao, J.; Brodjian, S.; Fry, D.; Dayton, B.; Marsh, K. C.;
Hernandez, L. E.; Ogiela, C. A.; Collins, C. A.; Kym, P.
R. Bioorg. Med. Chem. Lett. 2004, 14, 4879; (g) Souers,
A. J.; Wodka, D.; Gao, J.; Lewis, J. C.; Vasudevan, A.;
Gentles, R.; Brodjian, S.; Dayton, B.; Ogiela, C. A.; Fry,
D.; Hernandez, L. E.; Marsh, K. C.; Collins, C. A.;
Kym, P. R. Bioorg. Med. Chem. Lett. 2004, 14, 4883; (h)
Receveur, J.-M.; Bjurling, E.; Ulven, T.; Little, P. B.;
Nørregaard, P. K.; Ho¨gberg, T. Bioorg. Med. Chem.
Lett. 2004, 14, 5075; (i) Grey, J.; Dyck, B.; Rowbottom,
M. W.; Tamiya, J.; Vickers, T. D.; Zhang, M.; Zhao, L.;
Heise, C. E.; Schwarz, D.; Saunders, J.; Goodfellow, V.
S. Bioorg. Med. Chem. Lett. 2005, 15, 999; (j) Su, J.;
McKittrick, B. A.; Tang, H.; Czarniecki, M.; Greenlee,
W. J.; Hawes, B. E.; OÕNeill, K. Bioorg. Med. Chem.
2005, 13, 1829.
In conclusion, we have discovered a novel series of func-
tional MCH-R1 antagonists based on an N-methylated
bis-aminopyrrolidine urea core, containing either a
4-biphenylcarboxamide or 5-phenyl-2-thiophenecarbox-
amide group. SAR around the 5-phenyl-2-thiophene-
carboxamide group was explored, where it was observed
that either a 4-substituted or 2,4-disubstituted phenyl ring
was preferred for optimal binding with the receptor. In
addition, examples from this series display promising in
vitro metabolic stability profiles, exhibiting good stability
in the HLM assay with no significant inhibition of key
CYP450 metabolizing enzymes. This new series proved
to be significantly more stable (in vitro) than previously
described first-generation bis-aminopyrrolidine urea
MCH-R1 antagonists. Further results, including in vivo
PK and efficacy data in animal models, will be reported
in due course.
Acknowledgments
We are indebted to Mr. John Harman, Mr. Chris De-
vore, and Mr. Shawn Ayube for LC-MS support, Mrs.
Mila Lagman for HPLC support, and Dr. Fabio C. Tuc-
ci and Dr. Warren Wade for technical advice. This work
was partly supported by NIH Grant 2-R44-DK059107-
02.
10. Calculated using ACD/Labs Log P database, version 6.0
(2002), Advanced Chemistry Development Inc., Toronto,
References and notes
11. The diastereomeric purity of compound 5 was >98%, as
measured by HPLC. This was determined by direct com-
parison to an equal mixture of both possible diastereomeric
products, N-Boc protected (R)- and (S)-3-[(N-)methylami-
no]pyrrolidine-1-carboxylic acid [(R)-1-benzylpyrrolidin-3-
yl]methylamide, which was prepared as described (Scheme
1) using commercially available racemic 3-pyrrolidinol
hydrochloride
12. Analytical data for a typical example, the hydrochloride
salt of 5-(4-trifluoromethylphenyl)-2-thiophenecarbox-
amide bis-aminopyrrolidine urea 12: 1H NMR dH
(300 MHz; CDCl3) 12.83 and 12.40 (2· br m, 1H), 7.73
(d, J = 8.3 Hz, 2H), 7.66 (d, J = 8.3 Hz, 2H), 7.38 (m, 1H),
7.34 (d, J = 3.3 Hz, 1H), 5.04 (m, 1H), 4.76 and 4.17 (2·
m, 1H), 3.82 (m, 1H), 3.41–3.63 (m, 6H), 3.27 (m, 1H),
3.19 (s, 3H), 2.74–2.98 (m, 7H), 2.52 (m, 1H), 2.12–2.33
(m, 2H); MS (CI) m/z: 495.0 (M+H); Anal. Calcd for
1. Vaughan, J. M.; Fischer, W. H.; Hoeger, C.; Rivier, J.;
Vale, W. Endocrinology 1989, 125, 1660.
2. Boutin, J. A.; Suply, T.; Audinot, V.; Rodriguez, M.;
`
Beauverger, P.; Nicolas, J.-P.; Galizzi, J.-P.; Fauchere, J.-
L. Can. J. Physiol. Pharmacol. 2002, 80, 388, and
references cited therein.
3. For binding sites within the human brain, see, Sone, M.;
Takahashi, K.; Murakami, O.; Totsune, K.; Arihara, Z.;
Satoh, F.; Sasano, H.; Ito, H.; Mouri, T. Peptides 2000,
21, 245.
4. Hervieu, G. Expert Opin. Ther. Targets 2003, 7, 495, and
references cited therein.
5. Suply, T.; Della-Zuana, O.; Audinot, V.; Rodriguez, M.;
Beauverger, P.; Duhault, J.; Canet, E.; Galizzi, J.-P.;
Nahon, J.-L.; Levens, N.; Boutin, J. A. J. Pharmacol. Exp.
Ther. 2001, 299, 137.