1144 S. Ito et al.
Bull. Chem. Soc. Jpn., 78, No. 6 (2005)
temperature. The solvent and volatile materials were removed in
vacuo and the residue was extracted with hexane. Silica-gel col-
umn chromatography (hexane) of the hexane extracts afforded
19 mg of 1 (59% yield).
References
a) ‘‘Multiple Bonds and Low Coordination in Phosphorus
Chemistry,’’ ed by M. Regitz and O. J. Scherer, Georg Thieme Ver-
lag, Stuttgart (1990). b) K. B. Dillon, F. Mathey, and J. F. Nixon,
‘‘Phosphorus: The Carbon Copy,’’ Wiley, Chichester (1998).
1
Preparation of 6. To a solution of 5 (220 mg, 0.40 mmol) in
THF (10 mL) was added butyllithium (0.80 mmol) at ꢁ78 ꢂC and
stirred for 15 min. The mixture was treated with chlorotrimethyl-
silane (0.80 mmol) and allowed to warm to room temperature. The
solvent and volatile materials were removed in vacuo and the res-
idue was extracted with hexane. Silica-gel column chromatogra-
phy (hexane) of the hexane extracts afforded 119 mg of 6 (66%
2
2466 (1986). b) G. Markl and S. Reitinger, Tetrahedron Lett., 29,
a) R. Appel, V. Winkhaus, and F. Knoch, Chem. Ber., 119,
¨
463 (1988). c) M. Yoshifuji, S. Sasaki, and N. Inamoto, Tetra-
hedron Lett., 30, 839 (1989). d) M. Yoshifuji, H. Yoshimura,
and K. Toyota, Chem. Lett., 1990, 827. e) M. Yoshifuji, K.
Toyota, Y. Okamoto, and T. Asakura, Tetrahedron Lett., 31,
2311 (1990). f) M. Yoshifuji, K. Toyota, K. Shibayama, and N.
Inamoto, Tetrahedron Lett., 25, 1809 (1984).
ꢂ
1
yield). Colorless prisms (EtOH), mp 123–124 C; H NMR (400
MHz, CDCl3) ꢀ 0.44 (9H, s, SiMe3), 1.57 (9H, s, p-tBu), 1.80
(18H, s, o-tBu), 7.4–7.6 (7H, m, arom.); 13C{1H} NMR (151
3
a) S. Ito, S. Kimura, and M. Yoshifuji, Bull. Chem. Soc.
MHz, CDCl3) ꢀ 0.8 (s, SiMe3), 32.0 (s, p-CMe3), 34.1 (d, 4JPC
¼
Jpn., 76, 405 (2003). b) S. Ito, S. Kimura, and M. Yoshifuji,
Org. Lett., 5, 1111 (2003).
4 S. Ito, S. Sekiguchi, and M. Yoshifuji, Eur. J. Org. Chem.,
2003, 4838.
5 S. Ito, S. Sekiguchi, and M. Yoshifuji, J. Org. Chem., 69,
4181 (2004).
7 Hz, o-CMe3), 35.5 (s, p-CMe3), 38.9 (s, o-CMe3), 122.3 (d,
ꢀ
3JPC ¼ 12 Hz, ipso-Ph), 122.6 (s, m-Mes ), 127.0 (s, p-Ph),
1
128.6 (brs, o-Ph), 128.7 (s, m-Ph), 130.4 (d, JPC ¼ 68 Hz, ipso-
ꢀ
2
ꢀ
Mes ), 137.5 (d, JPC ¼ 17 Hz, P=C=C), 150.0 (s, p-Mes ),
ꢀ
1
155.0 (s, o-Mes ), 238.4 (d, JPC ¼ 37 Hz, P=C=C);
31P{1H} NMR (162 MHz, CDCl3) ꢀ 37. Anal. Calcd for
C29H43PSi: C, 77.28; H, 9.62%. Found: C, 77.24; H, 9.60%.
6
a) ‘‘The Chemistry of Ketenes, Allenes, and Related Com-
pounds,’’ ed by S. Patai, Wiley, New York (1980). b) ‘‘The Chem-
istry of the Allenes,’’ ed by S. R. Landor, Academic Press, London
(1982). c) H. F. Schuster and G. M. Coppola, ‘‘Allenes in Organic
Synthesis,’’ Wiley, New York (1984).
7 R. Hassig, D. Seebach, and H. H. Siegel, Chem. Ber., 117,
¨
1877 (1984).
8 H. Sugiyama, S. Ito, and M. Yoshifuji, Chem.—Eur. J., 10,
2700 (2004).
9 The reaction of 5 with n-butyllithium gave a mixture of
many unidentified compounds.
X-ray Crystallography of 6.
crystal dimension 0:30 ꢄ 0:20 ꢄ 0:20 mm3, monoclinic, P21=n
C29H43PSi, M ¼ 450:72,
ꢀ
(#14), a ¼ 10:6227ð7Þ, b ¼ 11:316ð1Þ, c ¼ 23:020ð2Þ A, ꢁ ¼
ꢂ
ꢀ 3
91:721ð6Þ , V ¼ 2765:8ð4Þ A , Z ¼ 4, 2ꢂmax ¼ 55:0ꢂ, T ¼ 130
K, ꢃðcalcdÞ ¼ 1:082 g cmꢁ3
,
ꢄ(Mo Kꢅ) ¼ 0:156 mmꢁ1
,
Fð000Þ ¼ 984, 20269 collected reflections, 5925 unique reflec-
tions (Rint ¼ 0:065), R1 ¼ 0:049 (I > 2ꢆðIÞ), RW ¼ 0:069 (all
data), S ¼ 1:07 (280 parameters) (CCDC-259388).
This work was supported in part by Grants-in-Aid for Scien-
tific Research (No. 13303039 and 14044012) from the Minis-
try of Education, Culture, Sports, Science and Technology. M.
Freytag is grateful to the Japan Society for the Promotion of
Science for Postdoctoral Fellowships for Foreign Researchers.
10 M. Kira and T. Iwamoto, ‘‘Silyl Migrations,’’ in ‘‘The
Chemistry of Organic Silicon Compounds,’’ ed by Z. Rappoport
and Y. Apeloig, Wiley, Chichester (2001), Vol. 3, pp. 853–948.
11 M. Yoshifuji, H. Yoshimura, and K. Toyota, Chem. Lett.,
1990, 827.