LETTER
Synthesis of the Conformationally Constrained Glutamate Analogue
1561
Neurotransmission, In Psychopharmacology: The Fourth
Generation of Progress; Bloom, F. E.; Kupfer, D. J., Eds.;
Raven Press: New York, 1995, 75–85.
able to obtain this key compound in almost pure form (ds
> 98:02 after a single recrystallization).18
Finally, completion of the synthesis of the novel confor-
mational restricted cis-azetidine glutamate 9 was carried
out by N-deprotection of diacid 8 with Na/naphthalene in
quantitative yield, after purification on ion exchange resin
(Dowex 50 H+).19
(4) (a) Choi, D. W. Ann. Rev. Neurosci. 1990, 13, 171.
(b) Meldrum, B. S. Brain Pathol. 1993, 3, 405. (c) Choi, D.
W. Prog. Brain Res. 1994, 100, 47. (d) Rothman, S. M.;
Olney, J. W. Trends Neurosci. 1995, 18, 57.
(5) Chamberlin, A. R.; Bridges, R. J. Conformationally
Constrained Amino Acids as Probes of Glutamate Receptors
and Transporters, In Drug Design for Neuroscience;
Kozikowski, A. P., Ed.; Raven Press: New York, 1993, 231–
259.
(6) For the synthesis and studies of azetidinic a-amino acids,
see: (a) Kozikowski, A. P.; Tückmantel, W.; Reynolds, I. J.;
Wroblewski, T. J. J. Med. Chem. 1990, 33, 1561.
(b) Kozikowski, A. P.; Tückmantel, W.; Liao, Y.;
Wroblewski, T. J.; Wang, S.; Pshenichkin, S.; Surin, A.;
Thomsen, C. Bioorg. Med. Chem. Lett. 1996, 6, 2559.
(c) Kozikowski, A. P.; Tückmantel, W.; Liao, Y.;
Wroblewski, T. J.; Manev, H.; Ikonomovic, S. J. Med.
Chem. 1993, 36, 2706. (d) Bridges, R. J.; Lovering, F. E.;
Humphrey, J. M.; Stanley, M. S.; Blakely, T. N.; Cristofaro,
M. F.; Chamberlin, R. Bioorg. Med. Chem. Lett. 1993, 3,
115. (e) Arakawa, Y.; Murakami, T.; Arakawa, Y.;
Yoshifugi, S. Chem. Pharm. Bull. 2003, 51, 96. (f) De
Kimpe, N.; Boeykens, M. Tetrahedron 1998, 54, 2619.
(g) Hanessian, S.; Bernstein, N.; Yang, R.; Maguire, R.
Bioorg. Med. Chem. Lett. 1999, 9, 1437. (h) Couty, F.;
Evano, G.; Rabasso, N. Tetrahedron: Asymmetry 2003, 14,
2407. (i) Couty, F.; Carlin-Sinclair, A.; Rabasso, N. Synlett
2003, 726.
After completion of the synthesis of the cis-glutamate an-
alogue 9, we have also examined the conversion of the
cis-diester 10 (prepared from diacid 8 with diazomethane)
to its trans stereoisomer. The use of bases such as LH-
MDS, KHMDS, t-BuOK, proton sponge, Me2NH20 and
pyridine led to no epimerization21 at C2 or led to decom-
position of the diester 10. However, reaction of diester 10
with DBU (10 equiv) in toluene at reflux for seven hours
provided a diastereomeric mixture of diester 10 and 11 in
a 20:80 (GC) ratio as described in Scheme 3. Attempts to
carry out this epimerization step beyond the cis:trans ratio
of 20:80 were fruitless.
NOE = 0.8%
O
O
H
H
MeO
MeO
OMe
OMe
O
DBU, 10 equiv
PhMe, reflux, 7 h
N
11
O
N
10
Ts
Ts
cis:trans = 20:80
cis:trans >98:2
(7) For a review on azetidin-3-ones, see: Dejaegher, Y.;
Kuz’nenok, N. M.; Zvonok, A. M.; De Kimpe, N. Chem.
Rev. 2002, 102, 29.
(8) Compound 4 was also prepared by Pussino: Pusino, A.;
Saba, A.; Desole, G. Gazz. Chim. Ital. 1985, 115, 33.
(9) Burtoloso, A. C. B.; Correia, C. R. D. Tetrahedron Lett.
2004, 45, 3355.
(10) For the synthesis of N-tosyl-azetidin-3-ones employing
Cu(acac)2, see: Wang, J.; Hou, Y.; Wu, P. J. Chem. Soc.,
Perkin Trans. 1 1999, 2277.
(11) For previous applications of the Wittig olefination of
azetidin-3-ones, see: (a) Hanessian, S.; Fu, J.; Chiara, J. L.;
Di Fabio, R. Tetrahedron Lett. 1993, 34, 4157. (b) Podlech,
J.; Seebach, D. Helv. Chim. Acta 1995, 78, 1238.
(c) Emmer, G. Tetrahedron 1992, 48, 7165.
Scheme 3 Epimerization of 10 with DBU
In summary, we have accomplished for the first time the
stereoselective synthesis of the novel cis-glutamate ana-
logue 9 containing an azetidine nucleus in seven steps in
15% yield from the chiral (S)-N-tosyl-phenylglycine.
Epimerization of the cis-glutamate analogue 10 with DBU
allowed the synthesis of the trans-glutamate analogue 11
with good diastereoselectivity. The synthesis of other con-
strained azetidine glutamates and aspartates will be re-
ported in due course.
Acknowledgment
(12) Inseparable mixture of compounds by column
chromatography.
We thank FAPESP (Research Supporting Foundation of the State of
São Paulo) for financial support and a student fellowship and Ange-
lo H. L. Machado (Unicamp) for useful suggestions during the de-
velopment of this work.
(13) Liu, H.; Ramani, B. Synth. Commun. 1985, 15, 965.
(14) The cis compound 6 could not be separated from its trans
isomer by column chromatography.
(15) Matsuura, F.; Hamada, Y.; Shioiri, T. Tetrahedron Lett.
1992, 33, 7921.
(16) Compound 7 was obtained as an inseparable mixture of the
cis and trans stereoisomers. The ratio of these compounds
was determined by 1H NMR and GC.
References
(1) (a) Kanai, Y.; Smith, C. P.; Hediger, M. A. Trends Neurosci.
1993, 16, 365. (b) Szatkowski, M.; Attwell, D. Trends
Neurosci. 1994, 17, 359.
(17) Clayden, J.; Menet, C. J.; Tchabanenko, K. Tetrahedron
2002, 58, 4727.
(2) (a) Conn, P. J.; Patel, J. In The Metabotropic Glutamate
Receptors; Humana Press: Totowa / New Jersey, 1994, 1–
277. (b) Hollmann, M.; Heinemann, S. Annu. Rev. Neurosci.
1994, 17, 31. (c) Nakanishi, S. Neuron 1994, 13, 1031.
(d) Nicolletti, F.; Bruno, V.; Copani, A.; Casabona, G.;
Knöpfel, T. Trends Neurosci. 1996, 19, 267.
(3) (a) Daw, N. W.; Stein, P. S.; Fox, K. A. Rev. Neurosci. 1993,
16, 207. (b) Collingridge, G. L.; Bliss, T. V. P. Trends
Neurosci. 1995, 18, 54. (c) Cotman, C. W.; Kahle, J. S.;
Miller, S. E.; Ulas, J.; Bridges, R. J. Excitatory Amino Acid
(18) Mp 201–202 °C (dec). IR: 3300–2500, 1698, 1437, 1346,
1229, 1161, 943 cm–1. 1H NMR (300 MHz, acetone-d6):
d = 7.79 (d, J = 8.8 Hz, 2 H), 7.49 (d, J = 8.8 Hz, 2 H), 4.62
(d, J = 9.5 Hz, 1 H), 3.90 (t, J = 8.1 Hz, 1 H), 3.50 (dd,
J = 8.1, 4.4 Hz, 1 H), 2.97 (m, 1 H), 2.67 (d, J = 8.1 Hz, 2 H),
2.46 (s, 3 H). 13C NMR (75 MHz, acetone-d6): d = 172.5,
169.6, 145.1, 134.1, 130.8, 129.0, 63.8, 54.2, 34.5, 28.4,
21.6.
Synlett 2005, No. 10, 1559–1562 © Thieme Stuttgart · New York