Journal of the American Chemical Society
Page 4 of 5
1
2
3
4
5
6
7
8
69, 3554; (c) Liebeskind, L. S.; Srogl, J. Heteroaromatic Thioether-Bo-
ronic Acid Cross-Coupling under Neutral Conditions, Org. Lett. 2002,
4, 979.
for Carbon–Carbon Bond Formation: The Functional Group Tolerant
Cobalt-Catalyzed Alkylation of Aryl Halides. Chem. Eur. J. 2010, 16,
5848; (f) Everson, D. A.; Jones, B. A.; Weix, D. J. Mechanism and Se-
lectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Hal-
ides with Alkyl Halides. J. Am. Chem. Soc. 2012, 134, 6146; (g) Wang,
S; Qian, Q.; Gong, H. Nickel-Catalyzed Reductive Coupling of Aryl
Halides with Secondary Alkyl Bromides and Allylic Acetate. Org. Lett.
2012, 14, 3352; (h) Biswas, S.; Weix, D. J. Replacing Conventional Car-
bon Nucleophiles with Electrophiles: Nickel-Catalyzed Reductive Al-
kylation of Aryl Bromides and Chlorides. J. Am. Chem. Soc. 2013, 135,
16192; (i) Molander, G. A.; Traister, K. M.; O’Neill, B. T. Engaging
Nonaromatic, Heterocyclic Tosylates in Reductive Cross-Coupling with
Aryl and Heteroaryl Bromides. J. Org. Chem. 2014, 79, 5771; (j) Mo-
lander, G. A.; Traister, K. M.; O’Neill, B. T. Engaging Nonaromatic,
Heterocyclic Tosylates in Reductive Cross-Coupling with Aryl and Het-
eroaryl Bromides. J. Org. Chem. 2015, 80, 2907; (k) Hu, L.; Liu, X.;
Liao, X. Nickel-Catalyzed Methylation of Aryl Halides with Deuterated
Methyl Iodide. Angew. Chem. Int. Ed. 2016, 55, 9743; (l) Zhang, P.;
“Chip” Le, C.; MacMillan, D. W. C. Silyl Radical Activation of Alkyl
Halides in Metallaphotoredox Catalysis: A Unique Pathway for Cross-
Electrophile Coupling. J. Am. Chem. Soc. 2016, 138, 8084; (m) Wang,
X.; Wang, S.; Xue, W.; Gong, H. Nickel-Catalyzed Reductive Coupling
of Aryl Bromides with Tertiary Alkyl Halides. J. Am. Chem. Soc. 2015,
137, 11562; (n) Wang, X.; Wang, S.; Xue, W.; Gong, H. Nickel-Cata-
lyzed Reductive Coupling of Aryl Bromides with Tertiary Alkyl Hal-
ides. J. Am. Chem. Soc. 2015, 137, 11562; (o) Wang, X.; Ma, G.; Peng,
Y.; Pitsch, C. E.; Moll, B. J.; Ly, T. D.; Wang, X.; Gong, H. Ni-Cata-
lyzed Reductive Coupling of Electron-Rich Aryl Iodides with Tertiary
Alkyl Halides. J. Am. Chem. Soc. 2018, 140, 14490.
(5) For reviews, see: (a) Prokopcová, H.; Kappe, C. O. The Liebeskind–
Srogl C‒C Cross-Coupling Reaction. Angew. Chem. Int. Ed. 2009, 48,
2276; (b) Cheng, H.-G.; Chen, H.; Liu, Y.; Zhou Q. The Liebeskind–
Srogl Cross-Coupling Reaction and Its Synthetic Applications. Asian J.
Org. Chem. 2018, 7, 490.
(6) For recent reviews on C–S Bond Activation, see: (a) Wang, L.; He, W.;
Yu, Z. Transition-Metal Mediated Carbon–Sulfur Bond Activation and
Transformations. Chem. Soc. Rev. 2013, 42, 599; (b) Modha, S. G.;
Mehtazb, V. P.; der Eycken, E. V. V. Transition Metal-Catalyzed C–C
Bond Formation via C–S Bond Cleavage: an Overview. Chem. Soc. Rev.
2013, 42, 5042; (c) Pan, F.; Shi, Z.-J. Recent Advances in Transition-
Metal-Catalyzed C−S Activation: From Thioester to (Hetero)aryl Thi-
oether. ACS Catal. 2014, 4, 280; (d) Otsuka, S.; Nogi, K.; Yorimitsu, H.
C–S Bond Activation. Top. Curr. Chem. 2018, 376, 13.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(7) For selected examples, see: (a) Itami, K.; Yamazaki, D.; Yoshida, J.-i.
Pyrimidine-Core Extended π-Systems: General Synthesis and Interest-
ing Fluorescent Properties. J. Am. Chem. Soc. 2004, 126, 15396; (b)
Denmark, S. E.; Cresswell, A. J. Iron-Catalyzed Cross-Coupling of Un-
activated Secondary Alkyl Thio Ethers and Sulfones with Aryl Grignard
Reagents. J. Org. Chem. 2013, 78, 12593; (c) Murakami, K.; Yorimitsu,
H.; Osuka, A. Practical, Modular, and General Synthesis of Benzofurans
through Extended Pummerer Annulation/Cross-Coupling Strategy. An-
gew. Chem. Int. Ed. 2014, 53, 7510; (d) Begouin, J.-M.; Rivard, M.;
Gosmini, C. Cobalt-Catalyzed C–SMe Bond Activation of Heteroaro-
matic Thioethers. Chem. Commun., 2010, 46, 5972; (e) Metzger, A.;
Melzig, L.; Despotopoulou, C.; Knochel, P. Pd-Catalyzed Cross-Cou-
pling of Functionalized Organozinc Reagents with Thiomethyl-Substi-
tuted Heterocycles. Org. Lett. 2009, 11, 4228; (f) Melzig, L.; Metzger,
A.; Knochel, P. Room Temperature Cross-Coupling of Highly Function-
alized Organozinc Reagents with Thiomethylated N-Heterocycles by
Nickel Catalysis. J. Org. Chem. 2010, 75, 2131; (g) Melzig, L.; Metzger,
A.; Knochel, P. Pd- and Ni-Catalyzed Cross-Coupling Reactions of
Functionalized Organozinc Reagents with Unsaturated Thioethers.
Chem. Eur. J. 2011, 17, 2948; (h) Otsuka, S.; Fujino, D.; Murakami, K.;
Yorimitsu, H.; Osuka, A. Palladium-Catalyzed Cross-Coupling of Un-
activated Aryl Sulfides with Arylzinc Reagents under Mild Conditions.
Chem. Eur. J. 2014, 20, 13146; (i) Liebeskind, L. S.; Srogl, J. Heteroar-
omatic Thioether-Boronic Acid Cross-Coupling under Neutral Reaction
Conditions. Org. Lett. 2002, 4, 979; (j) Hooper, J. F.; Young, R. D.; Per-
nik, I.; Weller, A. S.; Willis, M. C. Carbon–Carbon Bond Construction
Using Boronic Acids and Aryl Methyl Sulfides: Orthogonal Reactivity
in Suzuki-Type Couplings. Chem. Sci., 2013, 4, 1568; (k) Pan, F.; Wang,
H.; Shen, P.-X.; Zhao, J.; Shi, Z.-J. Cross Coupling of Thioethers with
Aryl Boroxines to Construct Biaryls via Rh-Catalyzed C–S Activation.
Chem. Sci., 2013, 4, 1573.
(8) For recent reviews, see: (a) Knappke, C. E. I.; Grupe, S.; Gꢀrtner, D.;
Corpet, M.; Gosmini, C.; von Wangelin, A. J. Reductive Cross-Coupling
Reactions between Two Electrophiles. Chem. Eur. J. 2014, 20, 6828; (b)
Everson, D. A.; Weix, D. J. Cross-Electrophile Coupling: Principles of
Reactivity and Selectivity. J. Org. Chem. 2014, 79, 4793; (c) Moragas,
T.; Correa, A.; Martin, R. Metal-Catalyzed Reductive Coupling Reac-
tions of Organic Halides with Carbonyl-Type Compounds. Chem. Eur.
J. 2014, 20, 8242; (d) Weix, D. J. Methods and Mechanisms for Cross-
Electrophile Coupling of Csp2 Halides with Alkyl Electrophiles. Acc.
Chem. Res. 2015, 48, 1767; (e) Gu, J.; Wang, X.; Xue, W.; Gong, H.
Nickel-Catalyzed Reductive Coupling of Alkylhalides with Other Elec-
trophiles: Concept and Mechanistic Considerations. Org. Chem. Front.
2015, 2, 1411; (f) Wang, X.; Dai, Y.; Gong, H. Nickel-Catalyzed Re-
ductive Couplings. Top. Curr. Chem. 2016, 374, 43.
(10) For a single example using in situ Grignard formation with pi-extended
C‒OMe systems, see: (a) Cao, Z.-C.; Luo, Q.-Y.; Shi, Z.-J. Practical
Cross-Coupling between O‑Based Electrophiles and Aryl Bromides via
Ni Catalysis. Org. Lett. 2016, 18, 5978. For homocoupling, see: (b)
Nakamura, K.; Tobisu, M.; Chatani, N., Nickel-Catalyzed Formal Ho-
mocoupling of Methoxyarenes for the Synthesis of Symmetrical Biaryls
via C–O Bond Cleavage. Org. Lett. 2015, 17, 6142.
(11) Hegedus, L. L.; McCabe, R. W. Catalyst Poisoning; Marcel Dekker:
New York, 1984.
(12) (a) O’Neill, M. J.; Riesebeck, T.; Cornella, J. Thorpe-Ingold Effect for
Branch-Selective Alkylation of Unactivated Aryl Fluorides. Angew.
Chem. Int. Ed. 2018, 57, 9103; (b) Moser, D.; Duan, Y.; Wang, F.; Ma,
Y.; O'Neill, M. J.; Cornella, J. Selective Functionalization of Aminohet-
erocycles by a Pyrylium Salt. Angew. Chem. Int. Ed. 2018, 57, 11035.
(13) For activation of 2-thiopyridine esters, see: Wotal, A. C.; Weix, D. J.
Synthesis of Functionalized Dialkyl Ketones from Carboxylic Acid De-
rivatives and Alkyl Halides Org. Lett. 2012, 14, 1476.
(14) See Supporting Information for details.
(15) For selected reviews, see: (a) Cornella, J.; Zarate, C.; Martin, R. Metal-
Catalyzed Activation of Ethers via C–O Bond Cleavage: a New Strategy
for Molecular Diversity. Chem. Soc. Rev. 2014, 43, 8081; (b) Ahrens,
T.; Kohlmann, J.; Ahrens, M.; Braun, T. Functionalization of Fluori-
nated Molecules by Transition-Metal-Mediated C−F Bond Activation
To Access Fluorinated Building Blocks. Chem. Rev. 2015, 115, 931.
(16) For recent review, see: O’Neill, M. J.; Cornella, J. Retaining Alkyl Nu-
cleophile Regiofidelity in Transition-Metal-Mediated Cross-Couplings
to Aryl Electrophiles. Synthesis 2018, 50, 3974.
(17) Kamal, A.; Syed, M. A. H.; Mohammed, S. M. Therapeutic Potential of
benzothiazoles: a patent review (2010-2014). Expert Opin. Ther. Pa-
tents, 2014, 25, 1.
(18) Harada, T.; Ueda, Y.; Iwai, T.; Sawamura, M. Nickel-Catalyzed Ami-
nation of Aryl Fluorides with Primary Amines. Chem. Commun. 2018,
54, 1718.
(19) One of the potential roles of the Zn is aiding the capture of the SMe
leaving group. For an excellent overview of the role of the Zn in a
Liebeskind-Srogl reaction, see: Liebeskind, L. S.; Srogl, J.; Savarin, C.;
Polaco, C. Bioinspired Organometallic Chemistry. Pure. Appl. Chem.
2002, 74, 115.
(20) (a) Hayashi, T.; Konishi, M.; Kobori, Y.; Kumada, M.; Higuchi, T.;
Kirotsu, K. Dichloro[l, l’-bis(diphenylphosphino)ferrocene]palladium-
(II): An Effective Catalyst for Cross-Coupling of Secondary and Pri-
mary Alkyl Grignard and Alkylzinc Reagents with Organic Halides. J.
Am. Chem. Soc. 1984, 106, 158; (b) Han, C.; Buchwald, S. L. Negishi
Coupling of Secondary Alkylzinc Halides with Aryl Bromides and
(9) For selected examples of C(sp2)‒C(sp3) reductive cross-coupling, see:
(a) Krasovskiy, A.; Duplais, C.; Lipshutz, B. H. Zn-Mediated, Pd-Cata-
lyzed Cross-Couplings in Water at Room Temperature Without Prior
Formation of Organozinc Reagents. J. Am. Chem. Soc. 2009, 131,
15592; (b) Bhonde, V. R.; O’Neill, B. T.; Buchwald, S. L. An Improved
System for the Aqueous Lipshutz–Negishi Cross-Coupling of Alkyl
Halides with Aryl Electrophiles. Angew. Chem. Int. Ed. 2016, 55, 1849;
(c) Czaplik, W. M.; Mayer, M.; von Wangelin, A. J. Domino Iron Ca-
talysis: Direct Aryl–Alkyl Cross-Coupling. Angew. Chem. Int. Ed. 2009,
48, 607; (d) Everson, D. A.; Shrestha, R.; Weix, D. J. Nickel-Catalyzed
Reductive Cross-Coupling of Aryl Halides with Alkyl Halides. J. Am.
Chem. Soc. 2010, 132, 932; (e) Amatore, M.; Gosmini, C. Direct Method
ACS Paragon Plus Environment