3554
B. Coggiola et al. / Bioorg. Med. Chem. Lett. 15 (2005) 3551–3554
–NCH2CH2OH). Compound 4: yellow oil (49%). MS
(ESI) m/z: 440 (M+H)+; 1H NMR (CDCl3) d: 6.98 (dd,
1H, arom., J = 8.5/1.9 Hz), 6.86 (br s, 1H, arom.), 6.76 (d,
1H, arom., J = 8.5 Hz), 6.48 (s, 2H, arom.), 6.44 (s, 2H,
olefinic), 3.83 (s, 3H, OMe), 3.82 (s, 3H, OMe), 3.70 (s,
6H, OMe), 3.42 (br s, 8H, –NCH2CH2Cl); Compound 5:
deep yellow oil (10%). MS (ESI) m/z: 484 (M+H)+; 1H
NMR (CDCl3) d: 6.86 (dd, 1H, arom., J = 8.2/1.9 Hz),
6.80 (d, 1H, arom., J = 1.9 Hz), 6.76 (d, 1H, arom.,
J = 8.2 Hz), 6.51 (s, 2H, arom.), 6.47 (d, 1H, olefinic,
J = 12.1 Hz), 6.41 (d, 1H, olefinic, J = 12.1 Hz), 3.85 (t,
–OCH2CH2N, J = 5.8 Hz), 3.83 (br s, 6H, OMe), 3.69 (s,
6H, OMe), 3.51 (t, –NCH2CH2Cl, J = 7.1 Hz), 2.99–2.94
(m, –OCH2CH2N + NCH2CH2Cl); Compound 6: white
solid (89%). mp 118–119.5 ꢁC; MS (ESI) m/z: 624
(M+Na)+; 1H NMR (CDCl3) d: 7.10 (dd, 1H, arom.,
J = 8.0/1.9 Hz), 7.08 (d, 1H, J = 8.0 Hz), 6.99 (d, 1H,
arom., J = 1.9 Hz), 6.84 (d, 2H, arom., J = 8.2 Hz), 6.62
(d, 2H, arom., J = 8.5 Hz), 6.50 (s, 2H, arom.), 6.44 (s, 2H,
olefinic), 3.82 (s, 3H, OMe), 3.80 (s, 3H, OMe), 3.70 (s,
6H, OMe), 3.69–3.60 (m, –NCH2CH2Cl), 2.62 (t, COCH2-
CH2CH2Ph, J = 7.4 Hz), 2.53 (t, COCH2CH2CH2Ph, J =
7.4 Hz), (q, COCH2CH2CH2Ph, J = 7.7 Hz). Purity of
target compounds was checked by HPLC analysis using a
Phenomenex Luna (250 · 4.6 mm, 5 lm particle size)
column on a Shimadzu HPLC system. Solvents for the
separation were: solvent A: water; solvent B: acetonitrile
at a flow rate of 1 ml/min and a sample injection volume of
210 ll. For compound 6, eluants A and B were delivered
isocratically at a 5:95 ratio. For compounds 4 and 5, a
linear gradient was used from 70:30 to 30:70 in 30 min. All
three compounds displayed a purity of at least 95%.
10. Gaukroger, K.; Hadfield, J. A.; Hepworth, L. A.; Law-
rence, N. J.; McGown, A. T. J. Org. Chem. 2001, 66, 8135.
11. Pinney, K. G.; Mejia, M. P.; Villalobos, V. M.; Rosen-
quist, B. E.; Pettit, G. R.; Verdier-Pinard, P.; Hamel, E.
Biorg. Med. Chem. 2000, 8, 2417.
tubulin via their active combretastatin group. If high
enough concentrations are placed in the vicinity of a
microtubule, then the nitrogen mustard will alkylate
tubulin or an accessory protein to prevent depolymeriza-
tion. Indeed, it is surprising that although compounds 4
and 5 are significantly less potent than 1 and 6, their effi-
cacy appears to be even greater. In cells treated with
combretastatin, there appears to be a small, but signifi-
cant, residual cell viability (approx. 10%), while no cells
appear to resist at high concentrations of 4 or 5 (Fig. 1).
It is exciting to speculate that capacity of these com-
pounds to act either by increasing or decreasing depoly-
merization in a concentration-dependent manner may
be responsible for this increased efficacy. Indeed, it has
been previously suggested that antitumor therapy with
a combination of polymerizing and depolymerizing
agents provides an added value.2
References and notes
1. McGown, A. T.; Fox, B. W. Cancer Chemother. Pharma-
col. 1990, 26, 79.
2. Tozer, G. M.; Kanthou, C.; Parkins, S. A.; Hill, S. A.
Int. J. Exp. Pathol. 2002, 83, 21.
3. Lin, C.; Singh, S. B.; Chu, P. S.; Dempcy, R. O.; Schmidt, J.
M.; Pettit, G. R.; Hamel, E. Mol. Pharmacol. 1988, 34, 200.
4. Dowlati, A.; Robertson, K.; Cooney, M.; Petros, W. P.;
Stratford, M.; Jesberger, J.; Rafie, N.; Overmoyer, B.;
Makkar, V.; Stambler, B.; Taylor, A.; Waas, J.; Lewin, J.
S.; McCrae, K. R.; Remick, S. C. Cancer Res. 2002, 62,
3408.
5. (a) Pedley, R. B.; Hill, S. A.; Boxer, G. M.; Flynn, A. A.;
Boden, R.; Watson, R.; Dearling, J.; Chaplin, D. J.;
Begent, R. H. J. Cancer Res. 2001, 61, 4716; (b) Chaplin,
D. J.; Hill, S. A. Int. J. Radiat. Oncol. Biol. Phys. 2002, 54,
1491.
12. The SH-SY5Y human neuroblastoma cell line and the
RBL cell line were obtained from ATCC (LGC Promo-
chem Teddington, UK), The REN human mesothelioma
cells16 were a kind gift of Professor G. Gaudino
13. Tron, G. C.; Pagliai, F.; Del Grosso, E.; Genazzani, A. A.;
Sorba, G. J. Med. Chem. 2005, 48, 3260.
6. West, C. M. L.; Price, P. Anti Cancer Drugs 2004, 15, 179.
7. Ohsumi, K.; Nakagawa, R.; Fukuda, Y.; Hatanaka, T.;
Morinaga, Y.; Nihei, Y.; Ohishi, K.; Suga, Y.; Akiyama,
Y.; Tsuji, Y. J. Med. Chem. 1998, 41, 3022.
14. Minotti, A. M.; Barlow, S. B.; Cabral, F. J. Biol. Chem.
1991, 266, 3987.
15. Prinz, H.; Ishii, Y.; Hirano, T.; Stoiber, T.; Camacho, G.
8. Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti,
A. K.; Lin, C. M.; Hamel, E. J. Med. Chem. 1991, 34,
2579.
J. A.; Schmidt, P.; Dussman, H.; Burger, A. M.; Prehn, J.
¨
Chem. 2003, 46, 3382.
¨
H. M.; Gunther, E. G.; Unger, E.; Umezawa, K. J. Med.
9. Compound 3: yellow oil (35%). MS (ESI) m/z: 404
1
(M+H)+; H NMR (CDCl3) d: 7.10 (m, 2H, arom.), 6.82
(d, 1H, arom., J = 8.8 Hz), 6.51 (d, 1H, olefinic,
J = 11.5 Hz), 6.45 (d, 1H, olefinic, J = 11.5 Hz), 6.44 (s,
2H, arom.), 3.86 (s, 3H, OMe), 3.82 (s, 3H, OMe), 3.70 (s,
6H, OMe), 3.45 (br t, 2H, –NCH2CH2OH), 3.08 (br s, 2H,
16. Smythe, W. R.; Kaiser, L. R.; Hwang, H. C.; Amin, K.
M.; Pilewski, J. M.; Eck, S. J.; Wilson, J. M.; Albelda, S.
M. Ann. Thorac. Surg. 1994, 57, 1395.