C O M M U N I C A T I O N S
Scheme 4
Supporting Information Available: Experimental procedures and
spectral data for all compounds. This material is available free of charge
References
(1) (a) Hunter, T. Cell 2000, 100, 113-127. (b) Ahn, N. Chem. ReV. 2001,
101, 2207. (c) Lawrence, D. S. Acc. Chem. Res. 2003, 36, 353-354.
(2) Manning, G.; Whyte, D. B.; Martinez, R.; Hunter, T.; Sudarsanam, S.
Science 2002, 298, 1912-1934.
(3) (a) Neel, B. G.; Tonks, N. K. Curr. Opin. Cell Biol. 1997, 9, 193-204.
(b) Zhang, Z.-Y. Acc. Chem. Res. 2003, 36, 385-392. (c) Jackson, M.
D.; Denu, J. M. Chem. ReV. 2001, 101, 2313-2340.
(4) (a) Finkel, T. Curr. Opin. Cell Biol. 2003, 15, 247-254. (b) Rhee, S. G.;
Chang, T.-S.; Bae, Y. S.; Lee, S.-R.; Kang, S. W. J. Am. Soc. Nephrol.
2003, 14, S211-S215. (c) Alder, V.; Yin, Z.; Tew, K. D.; Ronai, Z.
Oncogene 1999, 18, 6104-6111. (d) Mikkelsen, R. B.; Wardman, P.
Oncogene 2003, 22, 5734-5754.
(5) (a) Mahedev, K.; Zilbering, A.; Zhu, L.; Goldstein, B. J. J. Biol. Chem.
2001, 276, 21938-21942. (b) Meng, T.-C.; Fukada, T.; Tonks, N. K.
Mol. Cell 2002, 9, 387-399. (c) Bae, Y. S.; Sung, J.-Y.; Kim, O.-S.;
Kim, Y. J.; Hur, K. C.; Kazlauskas, A.; Rhee, S. G. J. Biol. Chem. 2000,
275, 10527-10531. (d) Chiarugi, P.; Fiaschi, T.; Taddei, M. L.; Talini,
D.; Giannoni, E.; Raugei, G.; Ramponi, G. J. Biol. Chem. 2001, 276,
33478-33487. (e) Downes, C. P.; Walker, S.; McConnachie, G.; Lindsay,
Y.; Batty, I. H.; Leslie, N. R. Biochem. Soc. Trans. 2004, 32, 338-342.
(e) Lee, S. R.; Kwon, K. S.; Kim, S. R.; Rhee, S. G. J. Biol. Chem. 1998,
273, 15366-15372.
dichloromethane. Consistent with our expectation14,15 that the
â-sulfinyl propionic acid ester group would decompose to produce
the desired sulfenic acids under these reaction conditions, we find
that the analogue 6, in which cyclization to the benzisothiazolinone
ring system is blocked by dialkyl substitution on the amide nitrogen,
yields the characteristic13 product (7) resulting from alkylation of
the sulfenic acid intermediate when incubated in the presence of
excess methyl iodide (Scheme 4).16 In the absence of methyl iodide,
this compound affords the expected13 products arising from sulfenic
acid dimerization (see Supporting Information). In direct analogy
to the oxidative inactivation of PTP1B shown in Scheme 2, we
find that treatment of the thiol 5a with H2O2 produces a good yield
of 3a (see Supporting Information).
(6) (a) Denu, J. M.; Tanner, K. G. Biochemistry 1998, 37, 5633-5642. (b)
Barrett, W. C.; DeGnore, J. P.; Keng, Y.-F.; Zhang, Z.-Y.; Yim, M. B.;
Chock, P. B. J. Biol. Chem. 1999, 274, 34543-34546. In some
phosphatases, the sulfenic acid intermediate undergoes further reaction
with a “back door” thiol at the active site; see: (c) Sohn, J.; Rudolph, J.
Biochemistry 2003, 42, 10060-10070. (d) Lee, S.-R.; Yang, K.-S.; Kwon,
J.; Lee, C.; Jeong, W.; Rhee, S. G. J. Biol. Chem. 2002, 277, 20336-
20342.
(7) (a) Johnson, T. O.; Ermolieff, J.; Jirousek, M. R. Nat. ReV. Drug DiscoVery
2002, 1, 696-709. (b) Hooft van Huijsduijnen, R.; Sauer, W. H. B.;
Bombrun, A.; Swinnen, D. J. Med. Chem. 2004, 47, 4142-4146.
(8) Salmeen, A.; Anderson, J. N.; Myers, M. P.; Meng, T.-C.; Hinks, J. A.;
Tonks, N. K.; Barford, D. Nature 2003, 423, 769-773.
(9) van Montfort, R. L. M.; Congreeve, M.; Tisi, D.; Carr, R.; Jhoti, H. Nature
2003, 423, 773-777.
(10) Gajda, T.; Zwierzak, A. Synthesis 1981, 1005-1008.
(11) Appropriately designed small organic molecules provide a powerful tool
for exploring the fundamental chemical reactivity of structurally complex
biopolymers and secondary metabolites. (a) Gates, K. S. Chem. Res.
Toxicol. 2000, 13, 953-956. (b) Greenberg, M. M. Chem. Res. Toxicol.
1998, 11, 1235-1248. (c) Myers, A. G.; Dragovich, P. S. J. Am. Chem.
Soc. 1989, 111, 9130-9132. (d) Robins, M. J.; Ewing, G. J. J. Am. Chem.
Soc. 1999, 121, 5823-5824. (e) D’Souza, V. T.; Bender, M. L. Acc. Chem.
Res. 1987, 20, 146-152. (f) Breslow, R. Acc. Chem. Res. 1995, 28, 146-
153.
Taken together, the results indicate first that the compounds 1
decompose to yield the sulfenic acid intermediates 2 and second
that the sulfenic acids (2) undergo efficient conversion to the 3-iso-
thiazolidinone products 3.17 In contrast, the mixed disulfide 4b
(Scheme 3, R′ ) CH2CH2OH) does not undergo rapid cyclization
to 3b either in organic solvent (CDCl3) or our standard sodium
phosphate buffer system.18 Overall, our findings indicate that the
oxidative transformation of PTP1B to its inactive 3-isothiazolidinone
form can proceed directly via oxidation of the active-site thiol to a
sulfenic acid intermediate (as shown in Scheme 2). This argues
against the need to invoke alternative mechanisms9 involving further
conversion of the sulfenic acid to a sulfenyl peroxide or a mixed
disulfide.
In addition to modeling the chemistry underlying oxidative
inactivation of PTP1B, the small organic system reported here also
mimics the thiol-mediated reduction of the inactive isothiazolidinone
form of the enzyme back to its catalytically active thiol form.8,9
Specifically, 3b is rapidly and completely converted (<1 min) to
the aromatic thiol 5b (Scheme 3) upon treatment with excess thiol
(10 µM 3b, 10 equiv of 2-mercaptoethanol, in 50 mM pH 7.0
phosphate buffer containing 30% acetonitrile).
In summary, we have developed a small organic molecule that
serves as an effective model for the redox-sensing assembly of
functional groups found at the active site of the enzyme PTP1B.
Importantly, results obtained with this model system show that the
sulfenic acid residue possesses sufficient electrophilicity to drive
the cyclization reaction with a neighboring amide group, thus
generating a 3-isothiazolidinone heterocycle analogous to that
recently characterized at the active site of oxidatively inactivated
PTP1B.8,9 Protein sulfenic acids are common intermediates gener-
ated during the oxidation of cysteine thiol residues in cells.19 This
fact, along with the remarkably facile nature of the sulfenic acid
chemistry reported here, suggests that the reversible formation of
a protein-derived 3-isothiazolidinone residue first seen in the context
of PTP1B represents a potentially general mechanism for redox
“switching” of protein function. Thus, this chemistry could have
broad relevance to both redox-regulated signal transduction and
the toxic effects of oxidative stress.
(12) Lohse, D. L.; Denu, J. M.; Santoro, N.; Dixon, J. E. Biochemistry 1997,
36, 4568-4575.
(13) O’Donnell, J. S.; Schwan, A. L. J. Sulfur Chem. 2004, 25, 183-211.
(14) (a) Cubbage, J. W.; Guo, Y.; McCulla, R. D.; Jenks, W. S. J. Org. Chem.
2001, 66, 8722-8736. (b) Adams, H.; Anderson, J. C.; Bell, R.; Neville
Jones, D.; Peel, M. R.; Tomkinson, N. C. O. J. Chem. Soc., Perkin 1
1998, 3967-3973. (c) Hashmi, M.; Vamvakas, S.; Anders, M. W. Chem.
Res. Toxicol. 1992, 5, 360-365.
(15) In addition, we successfully employed 2-(4-pyridyl)ethyl sulfoxides as
sulfenic acid precursors in this reaction: Katritzky, A. R.; Takahashi, I.;
Marson, C. M. J. Org. Chem. 1986, 51, 4914-4920. See Supporting
Information.
(16) In Scheme 1, we see the sulfenic acid group acting as an electrophile,
while in Scheme 4 it is a nucleophile. It is well documented that sulfenic
acids can act as either electrophiles or nucleophiles. See, for example:
Hogg, D. R.; Robertson, A. Tetrahedron Lett. 1974, 43, 3783-3784 and
Goto, K.; Holler, M.; Okazaki, R. J. Am. Chem. Soc. 1997, 119, 1460-
1461.
(17) The formation of 3 from 1, in principle, could occur via a process involving
dimerization of the sulfenic acid 2 to the corresponding thiosulfinate (RS-
(O)SR), followed by conversion of the thiosulfinate to 3. However, this
possibility is rendered unlikely based upon our observation (see Supporting
Information) that the yield of the cyclization product 3 (Scheme 3) is not
diminished when the reaction is conducted in the presence of methyl iodide
concentrations that completely preVent dimerization of a sulfenic acid
intermediate as shown in Scheme 4.
(18) In contrast, 2,2′-dithiobisbenzamides exist in equilibrium with the corre-
sponding 1,2-benzisothiazolin-3(2H)-ones, see: Domagala, J. M.; Bader,
J. P.; Gogliotti, R. D.; Sanchez, J. P.; Stier, M. A.; Song, Y.; Prasad, J.
V. N. V.; Tummino, P. J.; Scholten, J.; Harvey, P.; Holler, T.; Gracheck,
S.; Hupe, D.; Rice, W. G.; Schultz, R. Bioorg. Med. Chem. 1997, 5, 569-
579.
Acknowledgment. We thank Professors Peter Tipton, Richard
Loeppky, and Christina Wells for critical review of the manuscript
and are grateful to the NIH (CA 83925) for partial support of this
work.
(19) Claiborne, A.; Yeh, J. I.; Mallet, T. C.; Luba, J.; Crane, E. J.; Charrier,
V.; Parsonage, D. Biochemistry 1999, 38, 15407-15416.
JA052599E
9
J. AM. CHEM. SOC. VOL. 127, NO. 31, 2005 10831