ORGANIC
LETTERS
2013
Vol. 15, No. 4
844–847
Copper-Catalyzed CÀH Alkoxylation
of Azoles
Noriaki Takemura,† Yoichiro Kuninobu,*,†,‡ and Motomu Kanai*,†,‡
Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan, and ERATO, Japan Science and Technology
Agency (JST), Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan
kuninobu@mol.f.u-tokyo.ac.jp; kanai@mol.f.u-tokyo.ac.jp
Received December 25, 2012
ABSTRACT
We achieved copper-catalyzed intramolecular and intermolecular alkoxylation of azoles. This reaction is a rare example of transition-metal-
catalyzed CÀH alkoxylation of heteroaromatic compounds. In addition, the alkoxylation reaction proceeded well even in gram scale. In most
intermolecular alkoxylations, the use of an excess amount of alcohols (in some cases, alcohols are used as a solvent) is indispensable to
efficiently promote the alkoxylation reaction, but this alkoxylation reaction proceeded using only 1 equiv of alcohols.
CÀH transformations are attractive, effective, and ideal
reactions because carbonÀcarbon and carbonÀheteroatom
bonds can be constructed directly from stable organic
molecules.1 The development of efficient and useful CÀH
transformations is therefore strongly desired. CarbonÀ
oxygen bond forming reactions using alcohols as sub-
strates via aromatic CÀH bond activation, however, are
rare due to both the high electronegativity of an oxygen
atom and the great bond energy of metalÀoxygen bonds
formed in catalytic intermediates.2 Although a metal-
free oxidative coupling reaction between heterocycles
and alcohols was recently reported,3 CÀC bond forma-
tion at the carbon atom adjacent to a hydroxy group
of alcohols proceeded instead of CÀH alkoxylation. In
addition, oxidation of alcohols to aldehydes or ketones
is generally more facile than carbonÀoxygen bond forma-
tion under oxidative conditions.
As examples of aromatic CÀH aryloxylation/alkoxylation,
palladium- and copper-catalyzed synthesis of dibenzofuran
derivatives through intramolecular aryloxylation,4 iron-
mediated intramolecular alkoxylation,5 palladium-catalyzed
† The University of Tokyo.
‡ Japan Science and Technology Agency (JST).
(1) For reviews, see: (a) Kakiuchi, F.; Murai, S. Top. Organomet.
Chem. 1999, 3, 47. (b) Guari, Y.; Sabo-Etienne, S.; Chaudret, B. Eur. J.
Inorg. Chem. 1999, 1047. (c) Dyker, G. Angew. Chem., Int. Ed. 1999, 38,
1698. (d) Herrerıas, C. I.; Yao, X.; Li, Z.; Li, C.-J. Chem. Rev. 2007, 107,
´
(3) He, T.; Yu, L.; Zhang, L.; Wang, L.; Wang, M. Org. Lett. 2011,
13, 5016.
(4) (a) Wei, Y.; Yoshikai, N. Org. Lett. 2011, 13, 5504. (b) Xiao, B.;
Gong, T.-J.; Liu, Z.-J.; Liu, J.-H.; Luo, D.-F.; Xu, J.; Liu, L. J. Am.
Chem. Soc. 2011, 133, 9250. (c) Zhao, J.; Wang, Y.; He, Y.; Liu, L.; Zhu,
Q. Org. Lett. 2012, 14, 1078.
(5) Tang, L.; Pang, Y.; Yan, Q.; Shi, L.; Huang, J.; Du, Y.; Zhao, K.
J. Org. Chem. 2011, 76, 2744.
(6) Wang, X.; Lu, Y.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2010,
132, 12203.
(7) (a) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc.
2004, 126, 2300. (b) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett.
2006, 8, 1141. (c) Wang, G.-W.; Yuan, T.-T. J. Org. Chem. 2010, 75, 476.
(d) Zhang, S.-Y.; He, G.; Zhao, Y.; Wright, K.; Nack, W. A.; Chen, G.
J. Am. Chem. Soc. 2012, 134, 7313. (e) Jiang, T.-S.; Wang, G.-W. J. Org.
Chem. 2012, 77, 9504.
2546. (e) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res.
2008, 41, 1013. (f) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013. (g)
Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed.
2009, 48, 5094. (h) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem.
Rev. 2010, 110, 624. (i) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010,
110, 1147. (j) Kuninobu, Y.; Takai, K. Chem. Rev. 2011, 111, 1938. (k)
Davies, H. M. L.; Morton, D. Chem. Soc. Rev. 2011, 40, 1857. (l)
Borovik, A. S. Chem. Soc. Rev. 2011, 40, 1870. (m) Zhou, M.; Crabtree,
R. H. Chem. Soc. Rev. 2011, 40, 1875. (n) Lu, H.; Zhang, X. P. Chem.
Soc. Rev. 2011, 40, 1899. (o) Collet, F.; Lescot, C.; Dauban, P. Chem.
Soc. Rev. 2011, 40, 1926. (p) Hartwig, J. F. Chem. Soc. Rev. 2011, 40,
1992. (q) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc.
Chem. Res. 2012, 45, 814. (r) Neufeldt, S. R.; Sanford, M. S. Acc. Chem.
Res. 2012, 45, 936.
(2) (a) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470. (b)
Li, W.; Sun, P. J. Org. Chem. 2012, 77, 8362.
r
10.1021/ol303533z
Published on Web 01/31/2013
2013 American Chemical Society