activity in
a
7-day multi-round peripheral blood
33
33
33
rat
dog
cyno
0.5
13.8
2.0
3.7
1.2
2.3
51%
111%
19%
56
0.1
0.8
mononuclear cell (PBMC) assay. All three analogs had
slightly improved antiviral IC50 values in the PBL assay
when compared to the screening pHIV system. Applying
the fold-shift from the pHIV conditions provided a
predicted PBLPAIC50. Additionally, a 4-fold multiplier was
applied to empirically translate the IC50 to IC90 and thus
predict a clinical trough concentration target PAIC90.
ND = no drug detected at 24h
The results created further interest in exploring other
functionality at the N1 position. Further SAR studies to
optimize the potency, protein binding, ligand efficiencies,
and pharmacokinetics of this series and achieve a potential
for once-daily dosing will be the focus of subsequent
reports.
Table 4. Peripheral blood mononuclear cell (PBMC) antiviral activity
and determination of protein adjusted IC90 clinical trough concentration
targets.
PBLIC50
(nM)
Fold PBLPAIC50 PBLPAIC90
Shifta
3.3
(nM)b
14
(nM)c
55
Compd
References and Notes
9
4.2
4.3
2.3
24
33
2.9
13
50
† Current address for EPG is Viamet Pharmaceuticals, Inc.,
Durham, NC; and current address for SAF is Chimerix,
Inc., Durham, NC.
4.5
10
41
a Fold shift determined from pHIV assay.
b PBLPAIC50 PBLIC50 x fold shift
c PBLPAIC90 = 4 x PBLPAIC50
=
1
For the previous account in this series see: Johns, B. A.;
Kawasuji, T.; Weatherhead, J. G.; Boros, E. E.; Thompson,
J. B.; Koble, C. K.; Garvey, E. G.; Foster, S. A.; Jeffrey, J.
L.; Fujiwara, T. Bioorg. Med. Chem. Lett. 2013, 23, 422.
Compounds 9 and 24 showed no inhibition of CYP450’s
up to 33µM while 33 inhibited CYP1A2 at a level of
4.7µM. All three had good metabolic stability across rat,
dog, cyno and human S9 preparations. Each of the three
compounds were dosed in rats, beagle dogs and
cynomolgus monkeys via IV (1mg/kg) and oral (5 mg/kg)
routes of administration (Table 5). Oral dosing was
2
Boros, E. E.; Edwards, C. E.; Foster, S. A.; Fuji, M.;
Fujiwara, T.; Garvey, E. P.; Golden, P. L.; Hazen, R. J.;
Jeffrey, J. L.; Johns, B. A.; Kawasuji, T.; Kiyama, R.;
Koble, C. S.; Kurose, N.; Miller, W. H.; Mote, A. L.;
Murai, H.; Sato, A.; Thompson, J. B.; Woodward, M. C.;
Yoshinaga, T. J. Med. Chem. 2009, 52, 2754.
performed using
meglumine vehicle solution formulation.
a
10/10/80 DMSO/solutol/0.05M
All three
3 Johns, B. A.; Kawasuji, T.; Weatherhead, J. G.; Boros, E.
E.; Thompson, J. B.; Garvey, E. P.; Foster, S. A.; Jeffrey,
J. L.; Miller, W. H.; Kurose, N.; Matsumura, K.; Fujiwara,
T. Bioorg. Med. Chem. Lett. 2011, 21, 6461.
compounds had low clearance in rats while in dogs they
had slightly higher clearance ranging from 19% to 35% of
hepatic blood flow. Oral bioavailability values for 9 were
the most consistent across the three species suggesting no
permeability or solubility limitations in a therapeutic dose
range. However, the two methoxyethyl amide analogs 24
and 33 had a much larger range of the fraction absorbed
across the species with no clear pattern. We had a keen
interest in the concentration of drug at 24 hours post dose
(C24) relative to the PBLPAIC90. This serves as a crude
estimation of the potential inhibitory quotient (IQ)15 and
ultimately a property that would be expected to be a key
driver of efficacy. For the compounds studied, these
values were encouraging in rodent studies, especially in
the case for 33. However in higher species, the half-life of
each of these was simply not sufficient to support robust
coverage of the potency target suggesting these molecules
would likely require a twice-daily dose.
4 Garvey, E. P.; Johns, B. A.; Gartland, M. J.; Foster, S. A.;
Miller, W. H.; Ferris, R. G.; Hazen, R. J.; Underwood, M.
R.; Boros, E. E.; Thompson, J. B.; Weatherhead, J. G.;
Koble, C. S.; Allen, S. H.; Schaller, L. T.; Sherrill, R. G.;
Yoshinaga, T.; Kobayashi, M.; Wakasa-Morimoto, C.;
Miki, S.; Nakahara, K.; Noshi, T.; Sato, A.; Fujiwara, T.
Antimicrob. Agents Chemother. 2008, 52, 901.
5
Nakahara, K.; Wakasa-Morimoto, C.; Kobayashi, M.;
Miki, S.; Noshi, T.; Seki, T.; Kanamori-Koyama, M.;
Kawauchi, S.; Suyama, A.; Fujishita, T.; Yoshinaga, T.;
Garvey, E. P.; Johns, B. A.; Foster, S. A.; Underwood, M.
R.; Sato, A.; Fujiwara, T. Antiviral Res. 2009, 81, 141.
5
Kobayashi, M.; Nakahara, K.; Seki, T.; Miki, S.;
Kawauchi, S.; Suyama, A.; Wakasa-Morimoto, C.;
Kodama, M.; Endoh, T.; Oosugi, E.; Matsushita, Y.;
Murai, H.; Fujishita, T.; Yoshinaga, T.; Garvey, E.; Foster,
S.; Underwood, M.; Johns, B.; Sato, A.; Fujiwara, T.
Antiviral Res. 2008, 213.
Table 5. Rat in vivo pharmacokinetic screening results16
Clp
(mL/min/kg)
IV T1/2
(hr)
Compd Species
%F
C24/PBLPAIC90
6
Leeson, P. D.; Empfield, J. R. Ann. Rep. Med. Chem.
9
9
rat
dog
cyno
rat
0.7
10.9
6.3
13.8
1.3
69%
75%
60%
59%
7%
2.4
0.1
0.7
0.5
ND
0.6
2010, 45, 393.
7 Boros, E. E.; Burova, S. A.; Erickson, G. A.; Johns, B.
A.; Koble, C. S.; Kurose, N.; Sharp, M. J.; Tabet, E. A.;
Thompson, J. B.; Toczko, M. A. Org. Process Res.
Dev.2007, 11, 899.
9
5.0
24
24
24
3.6
12.5
1.8
dog
cyno
19.5
9.2
8
Johns, B. A.; Svolto, A. M. Expert Opin. Ther. Patents
5.4
31%
2008, 18, 1225