Electrochemically Responsive Abiotic Metallofoldamers
A R T I C L E S
Scheme 2
Mimics of oligonucleotides that bind metals are well-known
for abiotic systems,11 but analogues of peptides are rare12,13 and
consist mainly of molecules in which the metal serves as a
template for a helical secondary structure. Thus, most abiotic
mimics of metallopeptides bear analogy to the structure in Figure
1a,13d in which the metal coordination sphere is inherently
helical.13 In contrast, we are not aware of abiotic materials of
the type outlined in Figure 1b, in which metal coordination
nucleates the formation of a nonbiological single-stranded helix.
That is, the metal coordination sphere is not inherently chiral,
but instead causes a series of cooperative, noncovalent interac-
tions that ultimately result in a folded structure. The closest
precedent of such a material has been described by Moore, in
which an oligophenyleneethynylene with radially oriented nitrile
ligands binds two separate silver atoms.13 That material can be
considered to be a hybrid of the extremes in Figure 1.14 Another
related material has been reported by Lee and co-workers, in
which the metal is a structural unit of the backbone of a single-
stranded abiotic foldamer.13f On the basis of small-angle X-ray
data, it was proposed that the secondary structure could be
altered by varying the counterion of the metal.13f
Figure 1. Classification of abiotic analogues of metallopeptides as (a)
templated and (b) nucleated secondary structures.
In this contribution, we show that Ni(II) and Cu(II) complexes
2a and 2b, unlike the free ligand 1, adopt well-defined helical
structures in the crystalline state and in solution (Scheme 2).
Remarkably, both 2a and 2b undergo dynamic resolution (to
>94% ee) upon crystallization; crystal growth experiments
produced a single crystal that racemizes immediately when
redissolved at 5 °C. Despite their rapid racemization, a single
conformation is observed by NMR, and NOE shows that the
structure is very similar to that of the crystal. Thus, 2a and 2b
are fluxional molecules in solution whose thermodynamically
most favored conformations are helical. Smaller analogues of
1 have also been characterized crystallographically and by NMR
spectroscopy. Their Ni complexes are also helical, but the free
ligands are not. Cyclic voltamograms and modeling experiments
show that electrochemical reduction of 2b in a coordinating
environment is followed by a change in the coordination
geometry at the metal center that consequently alters the
secondary structure of the entire molecule. Salen and salophen
metal complexes have been applied in diverse areas of materials
science, and the incorporation of salen and salophen structures
into chiral polymers is known to produce materials with
exceptional chiroptical properties.15-17 For complexes such as
2b, the chiral order in the folded state should correlate to useful
properties (e.g., 2nd order NLO; induction of chiral nematic
liquid crystalline phases) that can be switched on/off by folding/
unfolding. Toward such applications, this work shows that
electrochemistry can be used to reversibly switch the structure
of Cu complex 2b from a thermodynamically helical state [as
tetracoordinate Cu(II)] to a nonhelical state [as pentacoordinate
Cu(I)].
(11) Reviews and lead references to abiotic single-stranded foldamers: (a)
Moore, J. S. Acc. Chem. Res. 1997, 30, 402-413. (b) Gin, M. S.;
Yokozawa, T.; Prince, R. B.; Moore, J. S. J. Am. Chem. Soc. 1999, 121,
2643-2644. (c) Stone, M. T.; Fox, J. M.; Moore, J. S. Org. Lett. 2004, 6,
3317-3320. (d) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem.
Soc. 1997, 119, 10587-15093. (e) Hamuro, Y.; Hamilton, A. D. Bioorg.
Med. Chem. 2001, 9, 2355-2363. (f) Gong, B. Chem.sEur. J. 2001, 7,
4336-4342. (g) Yang, X.; Yuan, L.; Yamato, K.; Brown, A. L.; Feng,
W.; Furukawa, M.; Zeng, X. C.; Gong, B. J. Am. Chem. Soc. 2004, 126,
3148-3162. (h) Huc, I. Eur. J. Org. Chem. 2004, 17-29. (i) Jiang, H.;
Dolain, C.; Leger, J.-M.; Gornitzka, H.; Huc, I. J. Am. Chem. Soc. 2004,
126, 1034-1035. (j) Zych, A. J.; Iverson, B. L. J. Am. Chem. Soc. 2000,
122, 8898-8909. (k) Berl, V.; Huc, I.; Khoury, R. G.; Lehn, J. M. Chem.s
Eur. J. 2001, 7, 2798-2809. (l) Cuccia, L. A.; Lehn, J.-M.; Homo, J.-C.;
Schmutz, M. Angew. Chem., Int. Ed. 2000, 39, 233-237. (m) Zhang, W.;
Horoszewski, D.; Decatur, J.; Nuckolls, C. J. Am. Chem. Soc. 2003, 125,
4870-4873. (n) Wu, Z.-Q.; Jiang, X.-K.; Zhu, S.-Z.; Li, Z.-T. Org. Lett.
2004, 6, 229-232. (o) Preston, A. J.; Fraenkel, G.; Chow, A.; Gallucci, J.
C.; Parquette, J. R. J. Org. Chem. 2003, 68, 22-26. (p) Gawronski, J.;
Gawronska, K.; Grajewski, J.; Kacprzak, K.; Rychlewska, U. J. Chem. Soc.,
Chem. Commun. 2002, 582-583.
(12) Reviews and lead references to abiotic multiply stranded foldamers: (a)
Lehn, J.-M.; Rigault, A.; Siegel, J.; Harrowfield, J.; Chevrier, B.; Moras,
D. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 2565-2569. (b) Piguet, C.;
Bernardinelli, G.; Hopfgartner, G. Chem. ReV. 1997, 97, 2005-2062. (c)
Albrecht, M. Chem. ReV. 2001, 101, 3457-3498. (d) Berl, V.; Huc, I.;
Khoury, R. G.; Krische, M. J.; Lehn, J. M. Nature 2000, 407, 720-723.
(e) Archer, E. A.; Gong, H.; Krische, M. J. Tetrahedron 2001, 57, 1139-
1159. (f) Gong, B. Synlett 2001, 5, 582-589.
(13) Lead references and reviews of abiotic single-stranded foldamers that bind
metals: (a) Prince, R. B.; Okada, T.; Moore, J. S. Angew. Chem., Int. Ed.
1999, 38, 233-236. (b) Mizutani, T.; Yagi, S.; Morinaga, T.; Nomura, T.;
Takagishi, T.; Kitagawa, S.; Ogoshi, H. J. Am. Chem. Soc. 1999, 121, 754-
759. (c) Constable, E. C. Tetrahedron 1992, 48, 10013-10059. (d)
Constable, E. C.; Drew, M. G. B.; Forsyth, G.; Ward, M. D. J. Chem.
Soc., Chem. Commun. 1988, 1450-1451. (e) Ho, P. K.-K.; Cheung, K.-
K.; Peng, S.-M.; Che, C.-M. J. Chem. Soc., Dalton Trans. 1996, 1411-
1417. (f) Kim, H.-J.; Zin, W.-C.; Lee, M. J. Am. Chem. Soc. 2004, 126,
7009-7014.
Results and Discussion
Design and Synthesis. The rationale for salen and salophen
metal complexes that form single-stranded helical foldamers is
(15) Dai, Y.; Katz, T. J. J. Org. Chem. 1997, 62, 1274-1285.
(16) (a) Zhang, H.-C.; Huang, W.-S.; Pu, L. J. Org. Chem. 2001, 66, 481-487.
(b) Pu, L. Chem. ReV. 1998, 98, 2405-2494.
(17) Tanaka, M.; Fujii, Y.; Okawa, H.; Shinmyozu, T.; Inazu, T. Chem. Lett.
1987, 1673-1674.
(14) The exterior turns of the helical structure described by Moore and co-
workers (ref 13a) are templated by each of the silver atoms, whereas the
central turn of the structure is controlled by noncovalent interactions.
9
J. AM. CHEM. SOC. VOL. 127, NO. 30, 2005 10591