Aza-peptidyl Michael Acceptors
Journal of Medicinal Chemistry, 2008, Vol. 51, No. 9 2831
3.3 (d, 2H, NCH2CONH2), 3.9–4.0 (m, 1H, R-H), 4.1–4.2 (m, 1H,
R-H), 5.22 (m, 1H, NH), 6.93 (d, 1H, NH), 7.1 (s, 1H, NH), 7.4 (s,
1H, NH), 7.85 (d, 1H, NH), 9.3 (s, 1H, NH).
Supporting Information Available: Results from elemental
analysis of target componds. This material is available free of charge
N2-(N-tert-Butyloxycarbonylalanylalanyl)-N1-carbamoylmethyl-
N1-trans-(3-ethoxycarbonylpropenoyl)hydrazine (10, Boc-Ala-
Ala-AAsn-CHdCHCOOEt). This compound was synthesized
using the EDC/HOBt coupling method, purified by chromatography
on a silica gel column using 1:9 MeOH/CH2Cl2 as the eluent, and
then recrystallized from EtOAc/hexane to give a white solid, yield
17%. 1H NMR (DMSO-d6): 1.14–1.16 (d, 3H, Ala-CH3), 1.21–1.24
(t, 3H, OCH2CH3), 1.24–1.26 (d, 3H, Ala-CH3), 1.36 (s, 9H, Boc),
3.33 (m, 2H, NCH2CO), 3.96 (m, 1H, R-H), 4.07–4.11 (q, 2H,
OCH2CH3), 4.26–4.29 (m, 1H, R-H), 6.56–6.60 (d, 1H, J ) 15.6
Hz, CHdCH,), 7.16–7.20 (m, 2H, NH and CHdCH), 7.51 (s, 1H,
NH), 8.03–8.04 (d, 1H, NH), 10.78 (s, 1H, NH).
References
(1) Chen, J. M.; Rawlings, N. D.; Stevens, R. A.; Barrett, A. J.
Identification of the active site of legumain links it to caspases,
clostripain and gingipains in a new clan of cysteine endopeptidases.
FEBS Lett. 1998, 441, 361–365.
(2) Davis, A. H.; Nanduri, J.; Watson, D. C. Cloning and gene expression
of Schistosoma mansoni protease. J. Biol. Chem. 1987, 262, 12851–
12855.
(3) Hara-Nishimura, I.; Takeuchi, Y.; Nishimura, M. Molecular charac-
terization of a vacuolar processing enzyme related to a putative cysteine
proteinase of Schistosoma mansoni. Plant Cell 1993, 5, 1651–1659.
(4) Chen, J. M.; Dando, P. M.; Stevens, R. A.; Fortunato, M.; Barrett,
A. J. Cloning and expression of mouse legumain, a lysosomal
endopeptidase. Biochem. J. 1998, 335 (Part 1), 111–117.
(5) Choi, S. J.; Reddy, S. V.; Devlin, R. D.; Menaa, C.; Chung, H.; Boyce,
B. F.; Roodman, G. D. Identification of human asparaginyl endopep-
tidase (legumain) as an inhibitor of osteoclast formation and bone
resorption. J. Biol. Chem. 1999, 274, 27747–27753.
N2-(Alanylalanyl)-N1-carbamoylmethyl-N1-trans-(3-ethoxy-
carbonylpropenoyl)hydrazine Trifluoroacetate Salt (11, TFA ·Ala-
Ala-AAsn-CHdCHCOOEt). Boc-Ala-Ala-AAsn-CHdCHCOOEt
was deblocked with trifluoroacetic acid/methylene chloride (1:5)
for 3 h at room temperature. The volatiles were evaporated, and
(6) Manoury, B.; Hewitt, E. W.; Morrice, N.; Dando, P. M.; Barrett, A. J.;
Watts, C. An asparaginyl endopeptidase processes a microbial antigen
for class II MHC presentation. Nature 1998, 396, 695–699.
(7) Aravind, L.; Koonin, E. V. Classification of the caspase-hemoglobinase
fold: detection of new families and implications for the origin of the
eukaryotic separins. Proteins 2002, 46, 355–367.
(8) Caffrey, C. R.; McKerrow, J. H.; Salter, J. P.; Sajid, M. Blood “n”
guts: an update on schistosome digestive peptidases. Trends Parasitol.
2004, 20, 241–248.
(9) Delcroix, M.; Sajid, M.; Caffrey, C. R.; Lim, K. C.; Dvorak, J.; Hsieh,
I.; Bahgat, M.; Dissous, C.; McKerrow, J. H. A multienzyme network
functions in intestinal protein digestion by a platyhelminth parasite.
J. Biol. Chem. 2006, 281, 39316–39329.
(10) Sojka, D.; Hajdusek, O.; Dvorak, J.; Sajid, M.; Franta, Z.; Schneider,
E. L.; Craik, C. S.; Vancova, M.; Buresova, V.; Bogyo, M.; Sexton,
K. B.; McKerrow, J. H.; Caffrey, C. R.; Kopacek, P. IrAE: an
asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes
ricinus. Int. J. Parasitol. 2007, 37, 713–724.
(11) Mathieu, M. A.; Bogyo, M.; Caffrey, C. R.; Choe, Y.; Lee, J.;
Chapman, H.; Sajid, M.; Craik, C. S.; McKerrow, J. H. Substrate
specificity of schistosome versus human legumain determined by P1-
P3 peptide libraries. Mol. Biochem. Parasitol. 2002, 121, 99–105.
(12) Rotari, V. I.; Dando, P. M.; Barrett, A. J. Legumain forms from plants
and animals differ in their specificity. Biol. Chem. 2001, 382, 953–
959.
(13) Dalton, J. P.; Brindley, P. J. Schistosome asparaginyl endopeptidase
Sm32 in hemoglobin digestion. Parasitol. Today 1996, 12, 125.
(14) Sajid, M.; McKerrow, J. H.; Hansell, E.; Mathieu, M. A.; Lucas, K. D.;
Hsieh, I.; Greenbaum, D.; Bogyo, M.; Salter, J. P.; Lim, K. C.;
Franklin, C.; Kim, J. H.; Caffrey, C. R. Functional expression and
characterization of Schistosoma mansoni cathepsin B and its trans-
activation by an endogenous asparaginyl endopeptidase. Mol. Biochem.
Parasitol. 2003, 131, 65–75.
(15) Caffrey, C. R.; Rheinberg, C. E.; Mone, H.; Jourdane, J.; Li, Y. L.;
Ruppel, A. Schistosoma japonicum, S. mansoni, S. haematobium, S.
intercalatum, and S. rodhaini: cysteine-class cathepsin activities in
the vomitus of adult worms. Parasitol. Res. 1997, 83, 37–41.
(16) Swanson, S. J.; Neitzel, D.; Reed, K. D.; Belongia, E. A. Coinfections
acquired from ixodes ticks. Clin. Microbiol. ReV. 2006, 19, 708–27.
(17) Loak, K.; Li, D. N.; Manoury, B.; Billson, J.; Morton, F.; Hewitt, E.;
Watts, C. Novel cell-permeable acyloxymethylketone inhibitors of
asparaginyl endopeptidase. Biol. Chem. 2003, 384, 1239–1246.
(18) Niestroj, A. J.; Feussner, K.; Heiser, U.; Dando, P. M.; Barrett, A.;
Gerhartz, B.; Demuth, H. U. Inhibition of mammalian legumain by
Michael acceptors and AzaAsn-halomethylketones. Biol. Chem. 2002,
383, 1205–1214.
(19) Rozman-Pungercar, J.; Kopitar-Jerala, N.; Bogyo, M.; Turk, D.;
Vasiljeva, O.; Stefe, I.; Vandenabeele, P.; Bromme, D.; Puizdar, V.;
Fonovic, M.; Trstenjak-Prebanda, M.; Dolenc, I.; Turk, V.; Turk, B.
Inhibition of papain-like cysteine proteases and legumain by caspase-
specific inhibitors: when reaction mechanism is more important than
specificity. Cell Death Differ. 2003, 10, 881–888.
the crude TFA salt was washed several times with to give a white
1
solid, yield 99%. H NMR (DMSO-d6): 1.14–1.16 (d, 3H, Ala-
CH3), 1.21–1.24 (t, 3H, OCH2CH3), 1.24–1.26 (d, 3H, Ala-CH3),
3.41 (m, 2H, NCH2CO), 3.83 (m, 1H, R-H), 4.14–4.19 (q, 2H,
OCH2CH3), 4.38–4.39 (m, 1H, R-H), 6.63–6.67 (d, 1H, J ) 15.6
Hz, CHdCH,), 7.16–7.23 (m, 2H, NH and CHdCH), 7.54 (s, 1H,
NH), 8.07 (s, 2H, 2 × NH), 10.97 (s, 1H, NH).
Biotin N-Hydroxysuccinimide (8, Biotin-OSu). This compound
was prepared by dissolving biotin (1 equiv) in DMF at 80 °C. Upon
cooling to room temperature N-hydroxysuccinimde (1.3 equiv) was
added together with DCC (1 equiv). The mixture was stirred for
12 h at room temperature. Dicyclohexylurea was filtered off, and
the solution was evaporated to dryness. The residue was taken up
in boiling isopropanol, and the resulting suspension was cooled to
room temperature. The solid was filtered and characterized, yield
1
72%. H NMR (DMSO-d6): 1.31–1.55 (m, 4H, biotin-CH2CH2),
1.55–1.69 (m, 2H, biotin-CH2), 2.54–2.57 (d, 1H, CHS), 2.63–2.70
(t, 2H, biotin-CH2CO), 2.78–2.90 (m, 7H, CH2S and Su-CH2CH2,
and CHS), 4.1–4.2(m, 1H, biotin-CH), 4.25–4.31 (m, 1H, biotin-
CH), 6.35 (s, 1H, biotin-NH), 6.41 (s, 1H, biotin-NH).
N2-(N-Biotinylalanylalanyl)-N1-carbamoylmethyl-N1-trans-(3-
ethoxycarbonylpropenoyl)hydrazine (12, Biotin-Ala-Ala-AAsn-
CHdCHCOOEt). To
a solution of TFA ·Ala-Ala-AAsn-
CHdCHCOOEt (1 equiv) in DMF, triethylamine (1 equiv) and
biotin N-hydroxysuccinimide (1.5 equiv) in DMF were added. The
mixture was stirred overnight at room temperature. The solvent
was evaporated, and the crude residue was washed several times
with cold methanol to give biotin-Ala-Ala-AAsn-CHdCHCOOEt
1
as a white solid, yield 31%. H NMR (DMSO-d6): 1.14–1.16 (d,
3H, Ala-CH3), 1.19–1.23 (t, 3H, OCH2CH3), 1.23–1.24 (d, 3H, Ala-
CH3), 1.27–1.28 (m, 2H, biotin-CH2), 1.45–1.64 (m, 4H, biotin-
CH2CH2), 2.06–2.10 (t, 2H, biotin-CH2CO), 2.54–2.57 (d, 1H,
CHS), 2.78–2.82 (dd, 1H, CH2S, J ) 5.2 and 12.4 Hz), 3.05–3.10
(m, 1H, CH2S), 3.31 (s, 2H, NCH2CO), 4.08–4.13 (m, 2H, biotin-
CH and R-H), 4.13–4.19 (q, 2H, OCH2CH3), 4.23–4.30 (m, 1H,
biotin-CH and R-H), 6.35 (s, 1H, biotin-NH), 6.41 (s, 1H, biotin-
NH), 6.57–6.61 (d, 1H, J ) 15.2 Hz, CHdCH,), 7.16–7.23 (m,
2H, NH and CHdCH), 7.51 (s, 1H, NH), 7.92 (d, 1H, NH),
8.15–8.16 (d, 1H, NH), 10.76 (s, 1H, NH). MS (ESI) m/z 584 [(M
+ 1)+]. HRMS (ESI) calculated for C24H38N7O8S: 584.2447.
Observed m/z 584.249 71.
Acknowledgment. The research was supported by grants
from the National Institute of General Medical Sciences (Grants
GM54401 and GM61964), the National Institute of Allergy and
Infectious Diseases (Grant AI053247), and the Sandler Family
Supporting Foundation. D.S. and P.K. were supported by Grant
206/06/0865 from the Grant Agency of the Czech Republic and
the Research Centre LC06009. We thank Amy Campbell and
Tiffany Stark for the preparation of disubstituted amines.
(20) Sexton, K. B.; Witte, M. D.; Blum, G.; Bogyo, M. Design of cell-
permeable, fluorescent activity-based probes for the lysosomal cysteine
protease asparaginyl endopeptidase (AEP)/legumain. Bioorg. Med.
Chem. Lett. 2007, 17, 649–653.
(21) James, K. E.; Götz, M. G.; Caffrey, C. R.; Hansell, E.; McKerrow,
J. H.; Carter, W.; Barrett, A.; Powers, J. C. Aza-peptide epoxides:
potent and selective inhibitors of Schistosoma mansoni and pig kidney