1072
L.-L. Liu et al. / Inorganic Chemistry Communications 14 (2011) 1069–1072
(c) C. Tedesco, L. Erra, I. Immediata, C. Gaeta, M. Brunelli, M. Merlini, C.
Acknowledgements
Meneghini, P. Pattison, P. Neri, Cryst. Growth Des. 10 (2010) 1527;
(d) S.J. Dalgarno, C.L. Raston, Dalton Trans. (2003) 287;
This work was financially supported by the National Natural Science
Foundation of China (20871088 and 90922018), the Nature Science Key
Basic Research of Jiangsu Province for Higher Education (09KJA150002),
the Specialized Research Fund for the Doctoral Program of higher
Education of Ministry of Education (20093201110017), the State Key
Laboratory of Coordination Chemistry of Nanjing University, the Priority
Academic Program Development of Jiangsu Higher Education Institu-
tions, the Qin-Lan and the “333” Projects of Jiangsu Province, and the
“Soochow Scholar” Program and the Program for Innovative Research
Team of Suzhou University. We highly appreciated the useful
suggestions of the reviewers and the editor.
(e) S.J. Dalgarno, M.J. Hardie, C.L. Raston, Cryst. Growth Des. 4 (2004) 227;
(f) R.G. Lin, L.S. Long, R.B. Huang, L.S. Zheng, Cryst. Growth Des. 8 (2008) 791;
(g) S.J. Dalgarno, J.L. Atwood, C.L. Raston, Cryst. Growth Des. 7 (2007) 174.
[5] (a) W.P. Liao, Y.F. Bi, S. Gao, D.Q. Li, H.J. Zhang, R. Dronskowski, Eur. J. Inorg.
Chem. (2008) 2959;
(b) M. Makha, A.N. Sobolev, C.L. Raston, Chem. Commun. (2006) 57;
(c) M. Makha, A.N. Sobolev, Cryst. Growth Des. 7 (2007) 1441.
[6] (a) C.D. Gutsche, J.A. Levine, P.K. Sujeeth, J. Org. Chem. 50 (1985) 5802;
(b) Y. Morita, T. Agawa, E. Nomura, H. Taniguchi, J. Org. Chem. 57 (1992) 3658.
[7] A solution of m-carboxybenzenediazonium chloride prepared from m-amino-
benzoic acid (2.74 g, 20 mmol), sodium nitrite (1.38 g, 20 mmol) and concd. HCl
(7.5 mL) in 35 mL of water was slowly added into a cold (0–5 °C) solution
containing 1 (2.0 g, 4.72 mmol) and sodium acetate trihydrate (8.16 g, 60 mmol)
in 50 mL of DMF. After being stirred for 4 h, the red suspension was adjusted to be
acidic with 300 mL of aqueous HCl (0.25%). The mixture was warmed at 60 °C for
30 min to produce 2 as a reddish solid, which was filtered and thoroughly washed
with water and MeOH, and dried in vacuo. Yield: 4.61 g (96%). Anal. Calcd. for
Appendix A. Supplementary data
C
56H40N8O12: C, 66.14; H, 3.96; N, 11.02. Found: C, 66.02; H, 3.83; N, 11.33. IR (KBr
disc): 3407 (m), 2948 (w), 1715 (s), 1699 (m), 1593 (m), 1532 (w), 1470 (m),
1450 (m), 1332 (w), 1268 (s), 1189 (w), 1119 (w), 899 (w), 810 (w), 761 (m),
CCDC no. 810114 contains the supplementary crystallographic
data for 3. These data can be obtained free of charge via http://www.
lographic data Centre, 12 Union Road, Cambridge CB2 1EZ, UK;
plementary data associated with this article can be found, in the
online version, at doi:10.1016/j.inoche.2011.03.077.
684 (w), 502 (w)cm-1 1H NMR (400 MHz, DMSO-d6): δ 8.27 (s, 4 H, ArH), 7.96-
.
8.03 (dd, 8 H, J=8 Hz, ArH), 7.85 (s, 8 H, ArH), 7.59-7.63 (t, 4 H, J=8 Hz, ArH),
4.17 and 4.56 (br, d, 8 H, ArCH2Ar). 13C NMR (400 MHz, DMSO-d6): δ 167.00,
158.24, 151.82, 145.00, 132.06, 130.67, 130.20, 129.81, 126.96, 124.74, 121.88,
31.44.
[8] To a 10 mL Pyrex glass tube was loaded Cd(NO3)2·4H2O (8 mg, 0.025 mmol), H4L
(13 mg, 0.0125 mmol), 1.5 mL of DMF and 1.5 mL of EtOH, forming a red clear
solution. After the pH value was adjusted to 5.0–6.0 by addition of 0.5 M HClO4,
the tube was sealed and heated in an oven to 90 °C for one day, and then cooled to
ambient temperature at the rate of 5 °C h-1 to form red blocks of 3, which were
collected and washed with EtOH and dried in air. Yield: 14 mg (62%, based on Cd).
Anal. Calcd. for C278H231Cd7N41O75.5: C, 53.75; H, 4.90; N, 9.24. Found: C, 53.99; H,
4.63; N, 9.65. IR (KBr disc): 3428 (m), 2927 (w), 1659 (s), 1596 (m), 1548 (s),
1470 (s), 1385 (s), 1267 (m), 1116 (m), 1020 (w), 913 (w), 771 (w), 688 (m),
References
[1] (a) K. Nakabayashi, Y. Ozaki, M. Kawano, M. Fujita, Angew. Chem. Int. Ed. 47
(2008) 2046;
(b) I.M. Müller, D. Möller, C.A. Schalley, Angew. Chem. Int. Ed. 44 (2005) 480;
(c) K. Ghosh, H.B. Yang, B.H. Northrop, M.M. Lyndon, Y.R. Zheng, D.C. Muddiman,
P.J. Stang, J. Am. Chem. Soc. 130 (2008) 5320;
(d) F. Huang, D.S. Nagvekar, C. Slebodnick, H.W. Gibson, J. Am. Chem. Soc. 127
(2005) 484;
666 (w), 505 (w)cm-1
.
[9] I.T. Ho, G.H. Lee, W.S. Chung, J. Org. Chem. 72 (2007) 2434.
[10] D. Liu, Z.G. Ren, H.X. Li, Y. Chen, J. Wang, Y. Zhang, J.P. Lang, CrystEngComm 12 (2010)
1912.
(e) B.H. Northrop, Y.R. Zheng, K.W. Chi, P.J. Stang, Acc. Chem. Res. 42 (2009)
1554.
[2] (a) S. Sato, J. Iida, K. Suzuki, M. Kawano, T. Ozeki, M. Fujita, Science 313 (2006)
1273;
[11] Crystal data for 3: C278H231Cd7N41O75.5, Mr =6140.92, triclinic, space group Pī,
a=18.7929(5), b=19.0242(4), c=26.2547(11) Å, α=74.825(6)˚, β=78.090
(6)˚, γ=64.843(5)˚, V=8151.2(6) Å3, Z=1, Dc =1.251 g cm-3, μ=0.526 mm-1
,
64479 reflections measured, 28444 unique reflections (Rint =0.0495), 21941
observed reflections (IN2σ(I)), 1808 parameters, R1 =0.0843, wR2 =0.2277,
S=1.106. X-ray single-crystal diffraction data for 3 was collected on a Rigaku
Mercury CCD diffractometer by using graphite monochromated Mo-Kα
(λ=0.71073 Å). Cell parameters were refined by using the program CrystalClear
(Rigaku and MSC, version 1.3, 2001). The crystal structures of 3 was solved by
direct methods and refined on F2 by full-matrix least-squares methods with the
SHELXL-97 program [12]. In 3, two EtOH solvent molecules were found to be
disordered over two positions with an occupancy factor of 0.737/0.263 for O30,
C128-C129/O30A, C128A-C129A, and 0.462/0.538 for O35, C139-C140/O35A,
C139A-C140A. All non-hydrogen atoms except for those of DMF (O27-O29, N19-
N21, C119-C127 and O32, N22, C132-C134), EtOH (O31, C130-C131 and O35-O40,
C139-C150) and H2O (O2W and O3W) solvent molecules were refined
anisotropically. The H atom of the protonated water molecule (O2W) was located
from Fourier maps. Except those of CO2H groups and the water solvent molecules
of 3, all other H atoms were introduced at the calculated positions and included in
the structure-factor calculations.
(b) J.P. Lang, Q.F. Xu, R.X. Yuan, B.F. Abrahams, Angew. Chem. Int. Ed. 43 (2004)
4741;
(c) Z.H. Wei, H.X. Li, M.L. Cheng, X.Y. Tang, Y. Chen, Y. Zhang, J.P. Lang, Inorg.
Chem. 48 (2009) 2808;
(d) W.H. Zhang, Y.L. Song, Z.H. Wei, L.L. Li, Y.J. Huang, Y. Zhang, J.P. Lang, Inorg.
Chem. 47 (2008) 5332.
[3] (a) K.C. Xiong, M.Y. Wu, Q.F. Zhang, W. Wei, M. Yang, F.L. Jiang, M.C. Hong, Chem.
Commun. (2009) 1840;
(b) C. Liu, F. Luo, W.P. Liao, D.Q. Li, X.F. Wang, R. Dronskowski, Cryst. Growth Des.
7 (2007) 2282;
(c) Y.F. Bi, W.P. Liao, H.J. Zhang, Cryst. Growth Des. 8 (2008) 3630;
(d) Y.B. Liu, W.P. Liao, Y.F. Bi, X.F. Wang, H.J. Zhang, Cryst. Growth Des. 9 (2009)
5311;
(e) J.L. Atwood, T. Ness, P.J. Nichols, C.L. Raston, Cryst. Growth Des. 2 (2002) 171;
(f) Y. Liu, K. Chen, D.S. Guo, Q. Li, H.B. Song, Cryst. Growth Des. 7 (2007) 2601;
(g) D.S. Guo, X. Su, Y. Liu, Cryst. Growth Des. 8 (2008) 3514;
(h) A. Lazar, E. Da Silva, A. Navaza, C. Barbeyb, A.W. Coleman, Chem. Commun.
(2004) 2162;
[12] G.M. Sheldrick, SHELXS-97 and SHELXL-97, Program for X-ray Crystal Structure
Solution, University of Göettingen, Germany, 1997.
(i) O. Danylyuk, B. Leśniewska, K. Suwinska, N. Matoussi, A.W. Coleman, Cryst.
Growth Des. 10 (2010) 4542;
[13] (a) Q.R. Fang, G.S. Zhu, M. Xue, Z.P. Wang, J.Y. Sun, S.L. Qiu, Cryst. Growth Des.
8 (2008) 319;
(j) H. Bakirci, A.L. Koner, M.H. Dickman, U. Kortz, W.M. Nau, Angew. Chem. Int.
Ed. 45 (2006) 7400;
(b) R.W. Zhang, L.L. Wang, X.J. Zhao, Acta Crystallogr, Sect. E: Struct. Rep. Online
65 (2009) m664.
(k) F. Perret, A.N. Lazar, A.W. Coleman, Chem. Commun. (2006) 2425.
[4] (a) M. Bolte, I. Thondorf, V. Böhmer, V. Rudzevich, Y. Rudzevich, CrystEngComm
10 (2008) 270;
[14] A.L. Spek, J. Appl. Crystallogr. 36 (2003) 7.
[15] A.F. Wells, Three-Dimensional Nets and Polyhedra, Wiley-Interscience, New York,
1977.
(b) J.M. Matheny, E. Bosch, C.L. Barnes, Cryst. Growth Des. 7 (2007) 984;
[16] B. Kiskan, F. Dogan, Y. Yuksel Durmaz, Y. Yagci, Des. Monomers Polym. 11 (2008) 473.