5998
S.-K. Anandan et al. / Bioorg. Med. Chem. Lett. 17 (2007) 5995–5999
and 6e). The sulfonamide analogs 6 show good potency
against HDAC enzymes, while the corresponding amide
analogs 7 and alkyl/aryl analogs 8 were less potent
against the HDAC enzyme and showed less antiprolifer-
ative activity against the breast tumor cell line (Table 1).
The antiproliferative activity (GI50) toward MCF7 for
sulfonamides 6 was in the range of 0.35–10 lM with
the best cellular activity seen for 6c which exhibited a
GI50 of 350 nM.
References and notes
1. Marks, P. A.; Rifkind, R. A.; Richon, V. M.; Breslow, R.;
Miller, T.; Kelly, W. K. Nat. Rev. Cancer 2001, 1, 194.
2. Kelly, W. K.; O’Connor, O. A.; Marks, P. A. Expert Opin.
Invest. Drugs 2002, 11, 1695.
3. Marks, P. A.; Richon, V. M.; Miller, T.; Kelly, W. K. Adv.
Cancer Res. 2004, 91, 137.
4. Bolden, J. E.; Peart, M. J.; Johnstone, R. W. Nat. Rev.
Drug Discov. 2006, 5, 769.
5. Curtin, M. L. Expert Opin. Ther. Pat. 2002, 12, 1375.
6. Hess-Stumpp, H. Eur. J. Cell Biol. 2005, 84, 109.
7. Kelly, W. K.; Marks, P. A. Nat. Clin. Pract. Oncol. 2005,
2, 150.
8. Kelly, W. K.; O’Connor, O. A.; Krug, L. M.; Chiao, J. H.;
Heaney, M.; Curley, T.; MacGregore-Cortelli, B.; Tong,
W.; Secrist, J. P.; Schwartz, L.; Richardson, S.; Chu, E.;
Olgac, S.; Marks, P. A.; Scher, H.; Richon, V. M. J. Clin.
Oncol. 2005, 23, 3923.
9. Remiszewski, S. W.; Sambucetti, L. C.; Bair, K. W.;
Bontempo, J.; Cesarz, D.; Chandramouli, N.; Chen, R.;
Cheung, M.; Cornell-Kennon, S.; Dean, K.; Diamantidis,
G.; France, D.; Green, M. A.; Howell, K. L.; Kashi, R.;
Kwon, P.; Lassota, P.; Martin, M. S.; Mou, Y.; Perez, L.
B.; Sharma, S.; Smith, T.; Sorensen, E.; Taplin, F.;
Trogani, N.; Versace, R.; Walker, H.; Weltchek-Engler,
S.; Wood, A.; Wu, A.; Atadja, P. J. Med. Chem. 2003, 46,
4609.
10. George, P.; Bali, P.; Annavarapu, S.; Scuto, A.; Fiskus,
W.; Guo, F.; Sigua, C.; Sondarva, G.; Moscinski, L.;
Atadja, P.; Bhalla, K. Blood 2005, 105, 1768.
11. Catley, L.; Weisberg, E.; Kiziltepe, T.; Tai, Y. T.;
Hideshimi, T.; Neri, P.; Tassone, P.; Atadja, P.; Chauh-
uan, D.; Munshi, N. C.; Anderson, K. C. Blood 2006, 108,
3441.
12. Giles, F.; Fischer, T.; Cortes, J.; Garcia-Manero, G.;
Beck, J.; Ravandi, F.; Masson, E.; Rae, P.; Laird, G.;
Sharma, S.; Kantarjian, H.; Dugan, M.; Albitar, M.;
Bhalla, K. Clin. Cancer Res. 2006, 12, 4628.
13. Plumb, J. A.; Finn, P. W.; Williams, R. J.; Bandara, M. J.;
Romero, M. R.; Watkins, C. J.; La Thangue, N. B.;
Brown, R. Mol. Cancer Ther. 2003, 2, 721.
Having identified the sulfonamide functionality as the
optimal cap group, we explored the possibility of
improving both HDAC enzyme activity and cell po-
tency by preparing the a, b-unsaturated hydroxamic
acids 9. Such a, b-unsaturated hydroxamic acids, for
example, LAQ824,7 LBH589,7 (2), and PXD1019 (3),
have been shown to be potent HDAC inhibitors.
The results presented in Table 2 suggest that such a
modification does not, in general, result in improved
potency in this series, except for 9a. Seven compounds
out of the nine in the 6 series displayed greater po-
tency against HDAC enzyme than the corresponding
a, b-unsaturated analog in the 9 series, with differ-
ences of approximately 2- to 50-fold (e.g., 6d, HDAC
IC50 of 0.2 lM vs 9d, HDAC IC50 of 11 lM). There
was not a direct correlation between HDAC inhibitory
activity and cellular potency for all pairwise compari-
sons within the 6 and 9 series, however 6 analogs
demonstrated higher enzyme inhibitory activity and
increased antiproliferative activity, for example, 6c
(IC50 0.09 lM, GI50 0.35 lM) versus 9c (IC50
0.55 lM, GI50 2 lM). The lack of correlation in cellu-
lar potency of the 9 series versus the 6 series com-
pounds may be due to improved cellular
permeability as a result of the a, b-unsaturated
hydroxamic acid function.
In summary, we have designed and synthesized a series
of novel HDAC inhibitors having both enzymatic and
antiproliferative activity. The sulfonamide analog 6c
was found to have both enzyme and cell potency similar
to SAHA. Future efforts will involve the identification of
readily synthesized analogs of series 6, which are potent
and chemically stable HDAC inhibitors that avoid any
liability resulting from the a, b-unsaturated double bond
present in series 9.
14. Qian, X.; LaRochelle, W. J.; Ara, G.; Wu, F.; Petersen, K.
D.; Thougaard, A.; Sehested, M.; Lichenstein, H. S.;
Jeffers, M. Mol. Cancer Ther. 2006, 5, 2086.
15. Suzuki, T.; Ando, T.; Tsuchiya, K.; Fukazawa, N.; Saito,
A. J. Med. Chem. 1999, 42, 3001.
16. Ryan, Q. C.; Headlee, D.; Acharya, M.; Sparreboom, A.;
Trepel, J. B.; Ye, J.; Figg, W. D.; Hwang, K.; Chung, E. J.;
Murgo, A.; Melillo, G.; Elsayed, Y.; Monga, M.; Kalnit-
skiy, M.; Zwiebel, J.; Sausville, E. A. J. Clin. Oncol. 2005,
23, 3912.
17. Furumai, R.; Matsuyama, A.; Kohashi, N.; Lee, K.-H.;
Nishiyama, M.; Nakajima, H.; Tanaka, A.; Komatsu, Y.;
Nishino, N.; Yoshida, M.; Horinouchi, S. Cancer Res.
2002, 62, 4916.
Table 2. HDAC inhibition and cell proliferation data for hydroxamic
acids 9a
18. Finnin, M. S.; Donigian, J. R.; Cohen, A.; Richon, V. M.;
Rifkind, R. A.; Marks, P. A.; Breslow, R.; Pavletich, N. P.
Nature 1999, 401, 188.
19. Somoza, J. R.; Skene, R. J.; Katz, B. A.; Mol, C.; Ho, J.
D.; Jennings, A. J.; Luong, C.; Arvai, A.; Buggy, J. J.; Chi,
E.; Tang, J.; Sang, B. C.; Verner, E.; Wynands, R.; Leahy,
E. M.; Dougan, D. R.; Snell, G.; Navre, M.; Knuth, M.
W.; Swanson, R. V.; McRee, D. E.; Tari, L. W. Structure
2004, 12, 1325.
20. Vannini, A.; Volpari, C.; Filocamo, G.; Casavola, E. C.;
Brunetti, M.; Renzoni, D.; Chakravarty, P.; Paolini, C.;
De Francesco, R.; Gallinari, P.; Steinkuhler, C.; Di
Marco, S. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 15064.
Compound Ar
HDAC
MCF7
IC50 (lM) GI50 (lM)
9a
9b
9c
9d
9e
9f
2-Napthyl
0.05
3.2
0.7
6
4-Trifluoromethoxyphenyl
4-Methylphenyl
4-Biphenyl
0.55
2
11
15
0.16
1.5
3
4-Trifluoromethylphenyl
3,4-Dimethoxyphenyl
Phenyl
4
9g
9h
9i
0.44
1.6
3
4-Nitrophenyl
4-Fluorophenyl
5
2.5
4.7
a Average value of at least two independent experiments.