LETTER
Hydride-Promoted Ring Expansion of 2-Azaspiropyrrolinium Salts
1729
oxidized according to the Swern procedure,27 as treatment
with PCC only resulted in a poor yield. The thus obtained
aldehyde 15c was then condensed with BnNH2 giving rise
to the expected aldimine 16c, which was reacted with one
equivalent of bromine under similar conditions as used
before.
(10) (a) Snider, B. B.; Cartaya-Marin, C. P. J. Org. Chem. 1984,
49, 1688. (b) Mieckzowski, J. B. Bull. Pol. Acad. Sci.,
Chem. 1985, 33, 13. (c) Kozikowski, A. P.; Yuen, P. W. J.
Chem. Soc., Chem. Commun. 1985, 847. (d) Hellberg, L.
H.; Beeson, C.; Somanathan, R.; De Graduados, C.
Tetrahedron Lett. 1986, 27, 3955. (e) Carruthers, W.;
Moses, R. C. J. Chem. Soc., Chem. Commun. 1987, 509.
(f) Carruthers, W.; Moses, R. C. J. Chem. Soc., Perkin
Trans. 1 1988, 2255. (g) Tanner, D.; He, H. M.; Bergdahl,
M. Tetrahedron Lett. 1988, 29, 6493. (h) Wanner, M. J.;
Koomen, G. J. Tetrahedron Lett. 1989, 30, 2301. (i) Kim,
D.; Kim, H. S.; Yoo, J. Y. Tetrahedron Lett. 1991, 32, 1577.
(j) Fujii, M.; Kawaguchi, K.; Nakamura, K.; Ohno, A. Chem.
Lett. 1992, 1493. (k) Wanner, M. J.; Koomen, G. J.
Tetrahedron 1992, 48, 3935. (l) Keppens, M.; De Kimpe, N.
Synlett 1994, 285. (m) Wanner, M. J.; Koomen, G. J. Pure
Appl. Chem. 1994, 66, 2239. (n) Senboku, H.; Hatazawa,
M.; Orito, K.; Tokuda, M. Heterocycles 1997, 46, 413.
(o) Deyine, A.; Poirier, J. M.; Duhamel, L.; Duhamel, P.
Tetrahedron Lett. 2005, 46, 2491.
In the same manner, the reduction of the iminium salt 17c
produced a 1:1 mixture of diastereomeric spiropyrrol-
idines 18c, which could not be separated by chromato-
graphic methods, and the spiropiperidine 19c (23%).
After catalytic hydrogenation, the latter conducted to the
2-azaspiro compound (–)-nitramine 7 in 88% yield (ca.
4% overall yield).
In summary, a new approach towards (–)-nitramine 7 has
been disclosed. This methodology makes use of an elec-
trophile-induced cyclization protocol of a suitable chiral
a-allylaldimine 8, and a hydride-promoted ring expansion
of the resulting transient spirocyclic iminium species. The
results obtained showed that chiral a-allylaldimines 16a
and 16c bearing a THP or a Bn group at oxygen, contrary
to aldimine 16b carrying a bulky TBDMS group, undergo
more efficiently such a rearrangement, probably due to
the lower steric hindrance of a Bn and THP substituent
compared to the TBDMS protective group. Stereoelec-
tronic effects might play a role, as well. In addition, a
suitable methodology was worked out for the synthesis of
spiropyrrolidines.
(11) Daly, J. W. In Progress in the Chemistry of Organic Natural
Products; Herz, W.; Griesebach, H.; Kirby, G. W., Eds.;
Springer-Verlag: Berlin, 1982, 205.
(12) (a) McCloskey, P. J.; Schultz, A. G. Heterocycles 1987, 25,
437. (b) Quirion, J. C.; Grierson, D. S.; Royer, J.; Husson, H.
P. Tetrahedron Lett. 1988, 29, 3311. (c) Tanner, D.; He, H.
M. Tetrahedron 1989, 45, 4309. (d) Imanishi, T.;
Kurumada, T.; Maezaki, N.; Sugiyama, K.; Iwata, C. J.
Chem. Soc., Chem. Commun. 1991, 1409. (e) Westermann,
B.; Scharmann, G.; Kortmann, J. Tetrahedron: Asymmetry
1993, 4, 2119. (f) Keppens, M.; De Kimpe, N. J. Org. Chem.
1995, 60, 3916. (g) Kim, D.; Choi, W. J.; Hong, J. Y.; Park,
I. Y.; Kim, Y. B. Tetrahedron Lett. 1996, 37, 1433.
(h) Yamane, T.; Ogasawara, K. Synlett 1996, 925. (i) Trost,
B. M.; Radinov, R.; Grenzer, E. M. J. Am. Chem. Soc. 1997,
119, 7879. (j) Francois, D.; Lallemand, M. C.; Selkti, M.;
Tomas, A.; Kunesch, N.; Husson, H. P. Angew. Chem. Int.
Ed. 1998, 37, 104. (k) Koreeda, M.; Wang, Y.; Zhang, L.
Org. Lett. 2002, 4, 3329.
Acknowledgment
The ‘Fund for Scientific Research-Flanders (Belgium)’ (F.W.O.-
Vlaanderen), and Ghent University are greatly acknowledged for
financial support. E.R.A. is indebted to the Mexican National
Council for Science and Technology (CONACyT).
(13) De Kimpe, N.; Boelens, M. J. Chem. Soc., Chem. Commun.
1993, 916.
References
(14) De Kimpe, N.; Boelens, M.; Piqueur, J.; Baele, J.
Tetrahedron Lett. 1994, 35, 1925.
(15) Alderdice, M.; Sum, F. W.; Weiler, L. Org. Synth. Coll. Vol.
VII; Wiley and Sons: New York, 1990, 351.
(16) Deol, B. S.; Ridley, D. D.; Simpson, G. W. Aust. J. Chem.
1976, 29, 2459.
(17) Fráter, G. Helv. Chim. Acta 1980, 63, 1383.
(18) Fráter, G.; Müller, U.; Günther, W. Tetrahedron 1984, 40,
1269.
(19) Kocienski, P. J. In Protecting Groups; Enders, D.; Noyori,
R.; Trost, B. M., Eds.; Georg Thieme Verlag: New York,
1994, 83.
(20) Greene, T. W.; Wuts, P. G. Protective Groups in Organic
Synthesis; John Wiley: New York, 1991, 31.
(1) Present address: Department of Organic Chemistry, Vrije
Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
(2) Smolanoff, J.; Kluge, A. F.; Meinwald, J.; McPhail, A.;
Miller, R. W.; Hicks, K.; Eisner, T. Science 1975, 188, 734.
(3) Sugahara, T.; Komatsu, Y.; Takano, S. J. Chem. Soc., Chem.
Commun. 1984, 214.
(4) Chemical Ecology; Sondheimer, E.; Simeone, J. B., Eds.;
Academic Press: New York, 1970, 157.
(5) Smolanoff, J. R. U.S. Patent 4400512, 1983; Chem. Abstr.
1983, 98, 198045.
(6) Osmanov, Z.; Ibragimov, A. A.; Yunusov, S. Yu. Khim.
Prir. Soedin. 1982, 126.
(7) Ibragimov, A. A.; Osmanov, Z.; Tashkhodzhaev, B.;
Adbullaev, N. D.; Yagudaev, M. R.; Yunusov, S. Yu. Khim.
Prir. Soedin. 1981, 623.
(8) Tashkhozhaev, B. Khim. Prir. Soedin. 1982, 75.
(9) Wanner, J. W.; Koomen, G. J. In Studies in Natural Products
Chemistry: Stereoselectivity in Synthesis and Biosynthesis of
Lupine and Nitraria Alkaloids; Atta-ur-Rahman, Ed.;
Elsevier: Amsterdam, 1994, 731; and references therein.
(21) Experimental Conditions.
A solution of 470 mg (2.9 mmol) of bromine in 10 mL of
CH2Cl2 was slowly added to 1.0 g (2.93 mmol) of imine 16a
in 10 mL of dry CH2Cl2 at 0 °C. After 20 min of vigorous
stirring at 0 °C, the solvent was evaporated in vacuo under
gentle warming, resulting in 17a as a syrupy ocher mass
which decomposed after standing at r.t.
(22) Spectral data of (6R,7S)-2-benzyl-2-azaspiro[5.5]-undecan-
7-ol (19a): 1H NMR (270 MHz, CDCl3): d = 1.04–1.80 [12
H, m, (CH2)6], 1.93–2.03 and 2.22–2.28 (1 H each, each m,
NCH2CH2), 2.88 (1 H, br d, JAX = 11.5 Hz, CspiroHCHN),
3.24 (1 H, d, JAX = 11.5 Hz, CspiroHCHN), 3.40–3.49 (1 H,
Synlett 2005, No. 11, 1726–1730 © Thieme Stuttgart · New York