K. Wright et al. / Tetrahedron Letters 46 (2005) 5573–5576
5575
O
N
O
O
N
(i) (ii)
(iii) (iv)
N
COOMe
NH.HCl
COOMe
COOH
Ph
NH2
Fmoc-NH
Me
trans-3 (1'S,3R,4S)
trans H-(3R,4S)-β-TOAC-OMe 4
trans Fmoc-(3R,4S)-β-TOAC-OH 5
Figure 4. Removal of the chiral auxiliary from 3, followed by C-deprotection/N-protection of the resulting b-amino ester enantiomer 4. (i) Pd/C 10%;
95% EtOH; rt; 30 min. (ii) Cu(OAc)2; MeOH; air; rt; 7 days, 41%; (iii) NaOH (aq); MeOH; reflux; 5 h. (iv) Fmoc-succinimidyl carbonate; NaHCO3;
acetone/water 2:1; rt; 18 h, 40%.
2. (a) Hanson, P.; Martinez, G.; Milhauser, G.; Formaggio,
F.; Crisma, M.; Toniolo, C.; Vita, C. J. Am. Chem. Soc.
1996, 118, 271–272; (b) Toniolo, C.; Crisma, M.; For-
maggio, F. Biopolymers 1998, 47, 153–158; (c) Toniolo, C.;
Formaggio, F.; Crisma, M.; Mazaleyrat, J.-P.; Waksel-
man, M.; George, C.; Deschamps, J.; Flippen-Anderson,
J. L.; Pispisa, B.; Venanzi, M.; Palleschi, A. Chem. Eur. J.
1999, 5, 2254–2264; (d) Corvaja, C.; Sartori, E.; Toffoletti,
A.; Formaggio, F.; Crisma, M.; Toniolo, C.; Mazaleyrat,
J. P.; Wakselman, M. Chem. Eur. J. 2000, 6, 2775–2782;
(e) Pispisa, B.; Mazzuca, C.; Palleschi, A.; Stella, L.;
Venanzi, M.; Wakselman, M.; Mazaleyrat, J.-P.; Rainaldi,
M.; Formaggio, F.; Toniolo, C. Chem. Eur. J. 2003, 9,
4084–4093.
3. (a) Beckwith, A. L. J.; Bowry, V. W.; Ingold, K. U. J. Am.
Chem. Soc. 1992, 114, 4983–4992; (b) Bowry, V. W.;
Ingold, K. U. J. Am. Chem. Soc. 1992, 114, 4992–4996; (c)
Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev.
2001, 101, 3661–3688; (d) Berliner, L. J.; Khramtsov, V.;
Fujii, H.; Clanton, T. L. Free Radic. Biol. Med. 2001, 30,
489–499.
Figure 5. ESR spectrum of trans H-(3R,4S)–TOAC-OMe 4 in a
0.5 mM MeOH solution at room temperature.
ilar treatment of trans (10R,3S,4R)-313 obtained by a
similar NaBH4 reduction of enamine (R)-2 in an isobu-
tyric acid/toluene solution, gave the trans H-(3S,4R)-b-
TOAC-OMe 413 enantiomer (not shown). Saponifica-
tion of the methyl ester function of trans H-(3R,4S)-b-
TOAC-OMe 4 and trans H-(3S,4R)-b-TOAC-OMe 4
followed by protection of the amino function with the
Fmoc group gave the b-amino acid derivatives trans
Fmoc-(3R,4S)-b-TOAC-OH 5 and its (3S,4R) 5 enantio-
mer (Fig. 4), suitable for use in peptide synthesis.
4. (a) Adam, W.; Saha-Mo¨ller, C. R.; Ganeshpure, P. A.
Chem. Rev. 2001, 101, 3499–3548; (b) Sheldon, R. A.;
Arends, I. W. C. E.; Ten Brink, G.-J.; Dijksman, A. Acc.
Chem. Res. 2002, 35, 774–781; (c) Arterburn, J. S.
Tetrahedron 2001, 57, 9765–9768.
5. (a) Naik, N.; Braslau, R. Tetrahedron 1998, 54, 667–696;
(b) Formaggio, F.; Bonchio, M.; Crisma, M.; Peggion, C.;
Mezzato, S.; Polese, A.; Barazza, A.; Antonello, S.;
Maran, F.; Broxterman, Q. B.; Kaptein, B.; Kamphuis,
J.; Vitale, R. M.; Saviano, M.; Benedetti, E.; Toniolo, C.
Chem. Eur. J. 2002, 8, 84–93.
´
6. (a) Wright, K.; Crisma, M.; Toniolo, C.; To¨ro¨k, R.; Peter,
A.; Wakselman, M.; Mazaleyrat, J.-P. Tetrahedron Lett.
In conclusion, the two enantiomers of the trans-b-
TOAC residue, bearing a nitroxide function, have been
synthesized in enantiopure form and in a reasonable
yield. Their synthesis was facilitated by an unexpected
selectivity in the reduction of an enamine intermediate.
Derivatives 4 and 5 of trans (3R,4S)-b-TOAC are cur-
rently being used, in combination with (1S,2S)-ACHC,
for the synthesis and 3D-structural analysis of a
designed b-hexapeptide.
´
2003, 44, 3381–3384; (b) Peter, A.; To¨ro¨k, R.; Wright, K.;
Wakselman, M.; Mazaleyrat, J.-P. J. Chromatogr. A 2003,
1021, 1–10.
7. (a) Appella, D. H.; Christianson, L. A.; Karle, I. L.;
Powell, D. R.; Gellman, S. H. J. Am. Chem. Soc. 1996,
118, 13071–13072; (b) Appella, D. H.; Christianson, L. A.;
Karle, I. L.; Powell, D. R.; Gellman, S. H. J. Am. Chem.
Soc. 1999, 121, 6206–6212.
8. Schinnerl, M.; Murray, J. K.; Langenhan, J. M.; Gellman,
S. H. Eur. J. Org. Chem. 2003, 721–726.
9. (a) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem.
Rev. 2001, 101, 3219–3232; (b) Steer, D. L.; Lew, R. A.;
Perlmutter, P.; Smith, A. I.; Aguilar, M.-I. Curr. Med.
Chem. 2002, 9, 811–822; (c) Seebach, D.; Kimmerlin, T.;
Sebesta, R.; Campo, M. A.; Beck, A. K. Tetrahedron 2004,
60, 7455–7506; (d) Cheng, R. P. Curr. Opin. Struct. Biol.
2004, 14, 512–520; (e) Seebach, D.; Beck, A. K.; Bier-
baum, D. J. Chem. Biodiv. 2004, 1, 1111–1239; (f) Hook,
References and notes
1. (a) Griffith, O. H.; Waggoner, A. S. Acc. Chem. Res. 1969,
2, 17–24; (b) Keana, J. F. Chem. Rev. 1978, 78, 37–64; (c)
Millhauser, G. L. Trends Biochem. Sci. 1992, 17, 448–452;
(d) Columbus, L.; Hubbell, W. L. Trends Biochem. Sci.
2002, 27, 288–295; (e) Jahnke, W. ChemBioChem 2002, 3,
167–173; (f) Franchi, P.; Lucarini, M.; Pedulli, G. F.
Current Org. Chem. 2004, 8, 1831–1849.
ˇ
D. F.; Bindscha¨dler, P.; Mahajan, Y. R.; Sebesta, R.;
Kast, P.; Seebach, D. Chem. Biodiv. 2005, 2, 591–632.