1290 M. Tanabe et al.
Bull. Chem. Soc. Jpn., 78, No. 7 (2005)
at room temperature for 20 h. The solvent was removed under re-
duced pressure. The residual material was washed with 2 cm3 of
hexane twice and dried in vacuo to give 1 as yellow powder
(88%). Elemental analysis. Calcd for C60H88P4Pt2: C, 54.45; H,
6.70%; Found: C, 52.31; H, 6.49%. 1H NMR (300 MHz, CD2Cl2,
25 ꢁC): ꢂ ꢃ7:57 (ddd, 2H, PtH, J(HP) ¼ 14, ꢃ23, 161 Hz,
J(HPt) ¼ 1042 Hz), 1.06 (t, 12H, C6H11, J(HH) ¼ 12 Hz), 1.16
(t, 6H, C6H11, J(HH) ¼ 12 Hz), 1.48 (t, 12H, C6H11, J(HH) ¼
12 Hz), 1.65 (t, 24H, C6H11, J(HH) ¼ 12 Hz), 1.79 (t, 12H,
C6H11, J(HH) ¼ 11 Hz), 7.03 (m, 12H, C6H5-meta and para),
7.52 (br, 8H, C6H5-ortho). 13C{1H} NMR (75 MHz, CD2Cl2, 25
ꢁC): ꢂ 26.9 (s, PCHCH2CH2CH2), 27.6 (d, PCHCH2CH2,
J(CP) ¼ 10:3 Hz), 30.5 (apparent triplet, PCHCH2, J(CPt) ¼
12:1 Hz), 36.1 (m, PCH, J(CP) ¼ 23:5 Hz), 126.8 (m, C6H5-meta,
J(CP) ¼ 8:7 Hz), 128.5 (s, C6H5-para), 136.0 (m, C6H5-ortho,
J(CP) ¼ 11:0 Hz), 142.7 (m, C6H5-ipso, J(CP) ¼ 28:4 Hz).
31P{1H} NMR (121 MHz, CD2Cl2, 25 ꢁC): ꢂ ꢃ93:4 (PPh2,
2J(PP) ¼ ꢃ14, ꢃ80, 265 Hz, 1J(PPt) ¼ 1330, 1730 Hz), 42.7
refinement of the parameters. Crystallographic data for the struc-
tural analyses have been deposited with the Cambridge Crystallo-
graphic Data Centre, CCDC Nos. 264269 and 264270 for 1 and 2,
respectively. Copies of this information may be obtained free of
charge from the Director, CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK (Fax: +44-1223-336-033; e-mail: deposit@ccdc.
cam.ac.uk or http://www.ccdc.cam.ac.uk).
This work was supported by Grants-in-Aid for Scientific
Research from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.
References
1
P. Braunstein and N. M. Boag, Angew. Chem., Int. Ed., 40,
2427 (2001).
E. Alonso, J. Fornies, C. Fortun˜o, A. Martın, and A. G.
Orpen, Organometallics, 20, 850 (2001).
P. Leoni, G. Chiaradonna, M. Pasquali, and F. Marchetti,
Inorg. Chem., 38, 253 (1999).
E. Alonso, J. M. Casas, F. A. Cotton, X. Feng, J. Fornies,
C. Fortun˜o, and M. Tomas, Inorg. Chem., 38, 5034 (1999).
P. Leoni, M. Pasquali, A. Fortunelli, G. Germano, and
A. Albinati, J. Am. Chem. Soc., 120, 9564 (1998).
P. Leoni, F. Marchetii, S. Papucci, and M. Pasquali, J.
Organomet. Chem., 593–594, 12 (2000).
R. Giannandrea, P. Mastrorilli, C. F. Nobile, and U.
Englert, J. Chem. Soc., Dalton Trans., 1997, 1355.
P. Leoni, M. Pasquali, M. Sommovigo, F. Laschi, P.
´
´
2
2
4
1
(PCy3, J(PP) ¼ ꢃ14, 265 Hz, J(PP) ¼ 11 Hz, J(PPt) ¼ 2340
3
3
Hz, J(PPt) ¼ ꢃ14 Hz). IR(cmꢃ1, KBr): 2031 (ꢇ(PtH)).
´
Preparation of [{Pd(PCy3)}2(ꢀ-PPh2)2] (2). To a solution of
[Pd(PCy3)2] (173 mg, 0.26 mmol) in 3 cm3 of tolueꢁne was added
diphenylphosphine (0.045 cm3, 0.26 mmol) at ꢃ60 C. The reac-
tion mixture was warmed gradually to room temperature and was
stirred for 2 h. The solvent was removed under reduced pressure.
The residual material was washed with 1.5 cm3 of hexane twice
and dried in vacuo to give 2 as a dark red solid in 67% yield. El-
emental analysis. Calcd for C60H86P4Pd2: C, 62.99; H, 7.5ꢁ8%;
Found: C, 63.42; H, 7.41%. 1H NMR (300 MHz, C6D6, 25 C):
ꢂ 0.99 (t, 6H, C6H11, J(HH) ¼ 12 Hz), 1.11 (q, 12H, C6H11,
J(HH) ¼ 12 Hz), 1.40 (t, 12H, C6H11, J(HH) ¼ 12 Hz), 1.56
(m, 18H, C6H11), 1.90 (m, 18H, C6H11), 7.04 (t, 4H, C6H5-para,
J(HH) ¼ 7:5 Hz), 7.20 (t, 8H, C6H5-meta, J(HH) ¼ 7:5 Hz),
7.90 (dd, 4H, C6H5-ortho, J(HH) ¼ 7:5 Hz, J(HP) ¼ 4:5 Hz),
7.92 (dd, 4H, C6H5-ortho, J(HH) ¼ 7:5 Hz, J(HP) ¼ 4:5 Hz).
4
5
6
7
8
Zanello, A. Albinati, F. Lianza, P. S. Pregosin, and H. Rueegger,
Organometallics, 12, 1702 (1993).
9
A. M. Arif, D. E. Heaton, R. A. Jones, and C. M. Nunn,
Inorg. Chem., 26, 4228 (1987).
10 P. Braunstein, M. Knorr, G. Reinhard, U. Schubert, and
T. Stahrfeldt, Chem.—Eur. J., 6, 4265 (2000).
¨
11 L. R. Falvello, J. Fornies, C. Fortu˜no, and F. Martinez,
13C{1H} NMR (75 MHz, C6D6, 25 ꢁC):
ꢂ
26.6 (s,
´
PCHCH2CH2CH2), 27.8 (apparent triplet, PCHCH2, J(CP) ¼
5:1 Hz), 31.1 (s, PCHCH2CH2), 35.6 (apparent quintet, PCH,
J(CP) ¼ 3:9 Hz), 126.8 (s, C6H5-para), 127.9 (t, C6H5-meta,
J(CP) ¼ 3:5 Hz), 133.3 (t, C6H5-ortho, J(CP) ¼ 8:7 Hz), 145.1
(s, C6H5-ipso). 31P{1H} NMR (121 MHz, C6D6, 25 ꢁC): ꢂ 52.8
Inorg. Chem., 33, 6242 (1994).
12 J. Powell, E. Fuchs, and J. F. Sawyer, Organometallics, 9,
1722 (1990).
13 R. T. Baker, W. C. Fultz, T. B. Marder, and I. D. Williams,
Organometallics, 9, 2357 (1990).
14 P. Leoni, S. Manetti, and M. Pasquali, Inorg. Chem., 34,
749 (1995).
15 P. Leoni, G. Chiaradonna, M. Pasquali, F. Marchetti, A.
Fortunelli, and G. Germano, Inorg. Chim. Acta, 264, 185 (1997).
16 M. Itazaki, Y. Nishihara, and K. Osakada, Organometal-
lics, 23, 1610 (2004).
2
2
(t, PCy3, J(PP) ¼ 41 Hz), 174.6 (t, ꢀ-PPh2, J(PP) ¼ 41 Hz).
X-ray Crystallography. Crystals of 1 and 2 suitable for X-ray
diffraction study were mounted in glass capillaries under argon.
ꢁ
Data of 1 and 2 were collected at ꢃ160 C on a Rigaku Saturn
CCD diffractometer equipped with monochromated Mo Kꢃ radia-
ꢀ
tion (ꢈ ¼ 0:71073 A). Calculations were carried out by using the
program package Crystal Structure for Windows. A full-matrix
least-squares refinement was used for the non-hydrogen atoms
with anisotropic thermal parameters. Hydrogen atoms except for
the PtH hydrogens of 1 were located by assuming the ideal geom-
etry and were included in the structure calculation without further
17 P. H. M. Budzelaar, ‘‘gNMR,’’ Adept Scientific Publishing,
Amor Way, Letchworth, Herts, SG6 1ZA, U.K., Vol. 4.1.2.
18 S. Otsuka, T. Yoshida, M. Matsumoto, and K. Nakatsu,
J. Am. Chem. Soc., 98, 5850 (1976).
19 M. Tanabe and K. Osakada, unpublished results.