Journal of the American Chemical Society
Communication
(11) For a review on polyether ionophores, see: Kevin, D. A., II;
Meujo, D. A. F.; Hamann, M. T. Expert Opin. Drug Discovery 2009, 4,
109.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(12) For total syntheses of (+)-SCH 351448, see: (a) Kang, E. J.;
Cho, E. J.; Lee, Y. E.; Ji, M. K.; Shin, D. M.; Chung, Y. K.; Lee, E. J.
Am. Chem. Soc. 2004, 126, 2680. (b) Kang, E. J.; Cho, E. J.; Ji, M. K.;
Lee, Y. E.; Shin, D. M.; Choi, S. Y.; Chung, Y. K.; Kim, J.-S.; Kim, H.-
J.; Lee, S.-G.; Lah, M. S.; Lee, E. J. Org. Chem. 2005, 70, 6321.
(c) Bhattacharjee, A.; Soltani, O.; De Brabander, J. K. Org. Lett. 2002,
4, 481. (d) Soltani, O.; De Brabander, J. K. Org. Lett. 2005, 7, 2791.
(e) Bolshakov, S.; Leighton, J. L. Org. Lett. 2005, 7, 3809.
(f) Crimmins, M. T.; Vanier, G. S. Org. Lett. 2006, 8, 2887.
(g) Cheung, L. L.; Marumoto, S.; Anderson, C. D.; Rychnovsky, S. D.
Org. Lett. 2008, 10, 3101. (h) Zhu, K.; Panek, J. S. Org. Lett. 2011, 13,
4652.
(13) For formal syntheses of (+)-SCH 351448, see: (a) Chan, K.-P.;
Ling, Y. H.; Loh, T.-P. Chem. Commun. 2007, 939. (b) Park, H.; Kim,
H.; Hong, J. Org. Lett. 2011, 13, 3742. (c) Also, see: Backes, J. R.;
Koert, U. Eur. J. Org. Chem. 2006, 2006, 2777.
(14) For a review of the syntheses of (+)-SCH 351448, see:
Hiersemann, M. Nachr. Chem. 2006, 54, 867.
(15) Reviews: (a) Brown, M. S.; Goldstein, J. L. Science 1986, 232,
34. (b) Brown, M. S.; Goldstein, J. L. Cell 1997, 89, 331.
(16) For selected reviews of alkene metathesis in natural product
total synthesis, see: (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D.
Angew. Chem., Int. Ed. 2005, 44, 4490. (b) Gradillas, A.; Perez-Castells,
J. Angew. Chem., Int. Ed. 2006, 45, 6086. (c) Lei, X.; Li, H. Top. Curr.
Chem. 2012, 327, 163.
(17) (a) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008,
130, 6340. (b) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc.
2008, 130, 14891. (c) Kim, I. S.; Han, S. B.; Krische, M. J. J. Am. Chem.
Soc. 2009, 131, 2514. (d) Gao, X.; Townsend, I. A.; Krische, M. J. J.
Org. Chem. 2011, 76, 2350.
(18) Reviews: (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996,
96, 395. (b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
(19) For the pyran synthesis via sequential nucleophilic and
electrophilic allylations, see: Shin, I.; Wang, G.; Krische, M. J. Chem.
- Eur. J. 2014, 20, 13382.
(20) For a review of the B-alkyl Suzuki reaction in natural product
total synthesis, see: Chemler, S. R.; Trauner, D.; Danishefsky, S. J.
Angew. Chem., Int. Ed. 2001, 40, 4544.
Experimental procedures and spectral data (PDF)
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The Robert A. Welch Foundation (F-0038) and the NIH-
NIGMS (RO1-GM069445) are acknowledged for partial
support of this research.
REFERENCES
■
(1) For selected reviews on selectivity in chemical synthesis, see:
(a) Trost, B. M. Science 1983, 219, 245. (b) Trost, B. M. Science 1991,
254, 1471. (c) Newhouse, T.; Baran, P. S.; Hoffmann, R. W. Chem.
Soc. Rev. 2009, 38, 3010.
(2) For selected reviews on site-selectivity, see: (a) Davie, E. A. C.;
Mennen, S. M.; Xu, Y.; Miller, S. J. Chem. Rev. 2007, 107, 5759. (b)
Site-Selective Catalysis; Kawabata, T., Ed.; Topics in Current
Chemistry; Springer: Cham, Switzerland, 2016; Vol. 372.
(3) Review: Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew.
Chem., Int. Ed. 2009, 48, 2854.
(4) “Given the fact that every reaction may be optimized··· the total
number of chemical transformations is the only variable in the
determination of strategic efficiency. Obviously, the fewer the total number
of reactions steps in a synthetic design, the higher the level of strategic
efficiency.” Qiu, F. Can. J. Chem. 2008, 86, 903. In our analysis of prior
syntheses, a step is defined as an operation that does not involve any
intervening purification/separation, including removal of solvent,
commencing with compounds that are over $50/gram
(5) “The ideal synthesis creates a complex skeleton··· in a sequence only of
successive construction reactions involving no intermediary functionaliza-
tions, and leading directly to the structure of the target, not only its skeleton
but also its correctly placed functionality.” Hendrickson, J. B. J. Am.
Chem. Soc. 1975, 97, 5784.
(21) (a) Kiyooka, S.-i.; Kaneko, Y.; Komura, M.; Matsuo, H.;
Nakano, M. J. Org. Chem. 1991, 56, 2276. (b) Kiyooka, S.-i.; Kaneko,
Y.; Kume, K.-i. Tetrahedron Lett. 1992, 33, 4927.
(22) (a) Fuwa, H.; Noto, K.; Sasaki, M. Org. Lett. 2010, 12, 1636.
(b) Fuwa, H.; Noto, K.; Sasaki, M. Org. Lett. 2011, 13, 1820. (c) Fuwa,
H.; Ichinokawa, N.; Noto, K.; Sasaki, M. J. Org. Chem. 2012, 77, 2588.
(d) Fuwa, H.; Noguchi, T.; Noto, K.; Sasaki, M. Org. Biomol. Chem.
2012, 10, 8108.
(6) For selected reviews that take inventory of transformations used
at the process level in the synthesis of advanced pharmaceutical
intermediates, see: (a) Dugger, R. W.; Ragan, J. A.; Ripin, D. H. B. Org.
Process Res. Dev. 2005, 9, 253. (b) Carey, J. S.; Laffan, D.; Thomson,
C.; Williams, M. T. Org. Biomol. Chem. 2006, 4, 2337. (c) Brown, D.
(23) Review: Fuwa, H. Heterocycles 2012, 85, 1255.
G.; Bostrom, J. J. Med. Chem. 2016, 59, 4443.
̈
(24) Trnka, T. M.; Morgan, J. P.; Sanford, M. S.; Wilhelm, T. E.;
Scholl, M.; Choi, T.-L.; Ding, S.; Day, M. W.; Grubbs, R. H. J. Am.
Chem. Soc. 2003, 125, 2546.
(25) (a) Cramer, R. J. Am. Chem. Soc. 1967, 89, 4621. (b) Jesse, A.
C.; Cordfunke, E. H. P.; Ouweltjes, W. Thermochim. Acta 1979, 30,
293.
(26) Sadaba, D.; Delso, I.; Tejero, T.; Merino, P. Tetrahedron Lett.
́
2011, 52, 5976.
(27) For a review describing related olefin isomerizations, see:
Donohoe, T. J.; O’Riordan, T. J. C.; Rosa, C. P. Angew. Chem., Int. Ed.
2009, 48, 1014.
(28) Hong, S. H.; Sanders, D. P.; Lee, C. W.; Grubbs, R. H. J. Am.
Chem. Soc. 2005, 127, 17160.
(29) As observed in prior syntheses, direct macrodiolide formation
through double transesterification or double cross-metathesis could
not be achieved.
(7) A total of 65 steps are required in the commercial manufacturing
route to eribulin (Halaven), of which half are devoted to oxidation
level adjustments and protecting group manipulations: Yu, M. J.;
Zheng, W.; Seletsky, B. M. Nat. Prod. Rep. 2013, 30, 1158.
(8) For selected reviews on protecting-group-free chemical synthesis,
see: (a) Hoffmann, R. W. Synthesis 2006, 2006, 3531. (b) Young, I. S.;
Baran, P. S. Nat. Chem. 2009, 1, 193. (c) Saicic, R. N. Tetrahedron
2014, 70, 8183. (d) Addition/Correction: Saicic, R. N. Tetrahedron
2015, 71, 2777.
(9) For selected reviews on hydrogenative and transfer hydrogenative
C−C coupling, see: (a) Hassan, A.; Krische, M. J. Org. Process Res. Dev.
2011, 15, 1236. (b) Ketcham, J. M.; Shin, I.; Montgomery, T. P.;
Krische, M. J. Angew. Chem., Int. Ed. 2014, 53, 9142. (c) Shin, I.;
Krische, M. J. Top. Curr. Chem. 2015, 372, 85. (d) Feng, J.; Kasun, Z.
A.; Krische, M. J. J. Am. Chem. Soc. 2016, 138, 5467.
(10) For the isolation of (+)-SCH 351448 and its initial biological
evaluation, see: Hegde, V. R.; Puar, M. S.; Dai, P.; Patel, M.; Gullo, V.
P.; Das, P. R.; Bond, R. W.; McPhail, A. T. Tetrahedron Lett. 2000, 41,
1351.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX