C O M M U N I C A T I O N S
high yield. No loss of stereochemical integrity was observed during
any of these ring-opening processes.
The present study is complementary to a recent enantioselective
addition-cyclization sequence reported by Kanemasa.5a The method
detailed in this communication provides a practical approach to
the enantioselective construction of monocyclic dihydropyrone
derivatives.14 These adducts afford useful options for the stereo-
selective construction of vicinal alkyl stereocenters in both dia-
stereochemical variants (Scheme 1). These stereochemical options
are complementary to the Claisen rearrangement for the construction
of either syn or anti vicinal carbon substituents on bis-functionalized
carbon chains.15
Figure 1. Stereochemical model for Michael reaction.
nucleophile/diene to the thiazolidinethione bound to a distorted
square planar Ni center, as represented by structure 10 (Figure 1).13
We suggest that the nucleophile is most likely a reactive enol
tautomer of the â-ketoester, formed at equilibrium concentrations
under the reaction conditions.
Acknowledgment. Support has been provided by the National
Science Foundation and the National Institutes of Health (GM-
33328-18). F.F. acknowledges support from the Fundacion Ramon
Areces.
Supporting Information Available: Experimental procedures,
spectral data for all compounds, crystallographic data, and stereochem-
ical proofs (CIF, PDF). This material is available free of charge via
References
(1) For reviews, see: (a) Tomioka, K.; Nagaoka, Y. In ComprehensiVe
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
Springer: Berlin, Germany, 1999; Vol. 3, Chapter 31.1. (b) Krause, N.;
Hoffman-Ro¨der, A. Synthesis 2001, 171-196. For recent examples, see:
(c) Wang, E.; Wang, J.; Ji, H. Angew. Chem., Int. Ed. 2005, 44, 1369-
1371. (d) Suga, H.; Kitamura, T.; Kakehi, A.; Baba, T. J. Chem. Soc.,
Chem. Commun. 2004, 1414-1415. (e) Watanabe, M.; Ikagawa, A.; Wang,
H.; Murata, K.; Ikariya, T. J. Am. Chem. Soc. 2004, 126, 11148-11149.
(f) Taylor, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 11204-
11205.
(2) (a) Evans, D. A.; Scheidt, K. A.; Johnston, J. N.; Willis, M. C. J. Am.
Chem. Soc. 2001, 123, 4480-4491. (b) Evans, D. A.; Rovis, T.;
Kozlowski, M. C.; Downey, C. W.; Tedrow, J. S. J. Am. Chem. Soc. 2000,
122, 9134-9142.
(3) Evans, D. A.; Seidel, D. J. Am. Chem. Soc. 2005, 127, 9958-9959.
(4) Complex 1b has been shown to catalyze an enantioselective alkylation,
see: Evans, D. A.; Thomson, R. J. J. Am. Chem. Soc. 2005, 127, 10474-
10475.
(5) (a) 1,3-Diketones: Itoh, K.; Hasegawa, M.; Tanaka, J.; Kanemasa, S. Org.
Lett. 2005, 7, 979-981. (b) Malononitrile: Itoh, K.; Oderaotoshi, Y.;
Kanemasa, S. Tetrahedron: Asymmetry 2003, 14, 635-639. (c) Nitro-
methane: Itoh, K.; Kanemasa, S. J. Am. Chem. Soc. 2002, 124, 13394-
13395. (d) Thiols: Kanemasa, S.; Oderaotoshi, Y.; Wada, E. J. Am. Chem.
Soc. 1999, 121, 8675-8676.
(6) Prepared in situ from 1a and 2.0 equiv of AgOTf. 1c was prepared in an
analogous fashion using AgBF4.
(7) Evans, D. A.; Miller, S. J.; Lectka, T.; von Matt, P. J. Am. Chem. Soc.
1999, 121, 7559-7573.
The product pyrones 5 are excellent substrates for further enolate-
based stereoselective transformations (Scheme 1). For example, the
lithium enolate derived from 5b may be selectively alkylated with
benzyl bromide to provide the anti lactone 11. Alternatively, aldol
condensation of 5b with benzaldehyde provides R,â-unsaturated
lactone 13. Hydrogenation of 13 (10% Pd/C, toluene) afforded the
syn-substituted product 14 with excellent diastereoselectivity. Both
the anti and syn adducts may be transformed into their derived
Weinreb amides 12 and 15, respectively, without loss of stereo-
chemistry after TFA-induced decarboxylation. Dihydropyrone 5b
may also be hydrolyzed to its derived carboxylic acid 16 (R ) H)
upon exposure to aqueous LiOH in THF and subsequent decar-
boxylation (eq 5). In a similar manner, treatment of 5b with sodium
methoxide affords the corresponding methyl ester 17 (R ) Me) in
Scheme 1. Stereoselective Elaboration of Dihydropyrone 5ba
(8) For the synthesis of related structures, see: Katritzky, A. R.; Deniski, O.
V. J. Org. Chem. 2002, 67, 3104-3108. See also ref 5a.
(9) Other alkyl acetoacetates were also effective; Me: 86% ee, Et: 91% ee,
Bn: 93% ee. See Supporting Information for full details.
(10) (a) Oikawa, Y.; Sugano, K.; Yonemitsu, O. J. Org. Chem. 1978, 43, 2087-
2088. (b) Hoffman, R. V.; Saenz, J. E. Tetrahedron Lett. 1997, 38, 8469-
8472.
(11) 8b and 8f are known compounds and allowed the assignment of the
absolute stereochemistry. See: (a) Enders, D.; Papadopoulos, K. Tetra-
hedron Lett. 1983, 45, 4967-4970. (b) Shi, Y.; Wulff, W. D.; Glenn, P.
A.; Rheingold, A. L. Chem. Commun. 1996, 2601-2602.
(12) See Supporting Information for full details.
(13) Model generated from the X-ray structure of [Ni((S)-BINAP)]Cl2 by
docking the thiazolidinethione to the Ni center, followed by PM3
minimization. See Supporting Information for X-ray structure.
(14) An enantioselective hydrogenation of pyrone derivatives to 5,6-dihydro-
2-pyrones has been reported. See: Fehr, M. J.; Consiglio, G.; Scalone,
M.; Schmid, R. J. Org. Chem. 1999, 64, 5678-5776 and references
therein.
(15) For a review, see: Wipf, P. In ComprehensiVe Organic Synthesis; Trost,
B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 5, Chapter
7.2.
a Reagents and conditions: (a) LiHMDS (1 equiv), BnBr (5 equiv); (b)
i. LiHMDS (1.5 equiv), PhCHO (1.5 equiv), -78 °C, THF; ii. MsCl (2
equiv), Et3N (2.5 equiv), CH2Cl2, rt; iii. DBU (2 equiv), toluene, rt, 81%
(three steps); (c) H2, 10% Pd/C, toluene, 100%; (d) i. Me(OMe)NH‚HCl
(5 equiv), i-PrMgCl (9 equiv), THF, -20 °C; ii. TFA, CH2Cl2, rt, 80%.
JA053820Q
9
J. AM. CHEM. SOC. VOL. 127, NO. 31, 2005 10817