Synthesis of Heavily Substituted 1,2-Amino
Alcohols in Enantiomerically Pure Form
Noem´ı Garc´ıa-Delgado,† Katamreddy Subba Reddy,†
Llu´ıs Sola`,‡ Antoni Riera,† Miquel A. Perica`s,*,†,‡ and
Xavier Verdaguer*,†
Unitat de Recreca en S´ıntesi Asime`trica (URSA-PCB),
Parc Cientı´fic de Barcelona and Departament de Qu´ımica
Orga`nica, Universitat de Barcelona, c/Josep Samitier,
1-5, E-08028 Barcelona, Spain, and Institute of Chemical
Research of Catalonia (ICIQ), E-43007 Tarragona, Spain
mapericas@iciq.es; xverdaguer@pcb.ub.es
Received May 13, 2005
FIGURE 1.
SCHEME 1
and diarylzinc to aldehydes.5 Our recent studies indicate
that the bulky triaryl structure in 4 is responsible for
this high catalytic activity.6 To extend the use of con-
gested 1,2-amino alcohols as a common building block
for other applications, an efficient synthesis of 2-amino-
1,1,2-triarylethanol structures is required.
A simple and convenient methodology for the preparation
of optically pure 2-amino-2-aryl-1,1-diphenylethanols is
presented. Allylamine was found to produce the ring-opening
of triaryloxiranes in a regioselective and a stereospecific
fashion. Removal of the allyl protecting group provided the
free 1,2-amino alcohols in enantiomerically pure form.
Traditionally, the synthesis of highly substituted 1,2-
amino alcohols is carried out from natural amino acids
by nucleophilic attack of the carboxylic moiety with a
Grignard or alkyllithium reagent7 (Scheme 1). For ex-
ample, the synthesis of 2-amino-1,1,2-triphenylethanol
(5) has been reported from phenylglycine and 10 equiv
of PhMgBr.8 However, this approach has several draw-
backs. It requires a large excess of Grignard reagent, and
more significantly, the use of an optically pure amino acid
as starting material limits the final structures that can
be acceded to commercially available amino acids. Given
that for many applications the nitrogen atom in the
amino alcohol moiety acts as the metal chelating element
it would be of great interest to modify at will the
electronic and steric properties of the amino group. An
alternative oxirane ring-opening approach should, in
principle, allow for an efficient introduction of diversity
in the 2 position, since different aryl groups can be
introduced at that center at the olefin construction stage
(Scheme 1). However, reliable procedures for the intro-
duction of primary amino groups via ring-opening of
sterically congested epoxides are not available. In this
context, here we report the development of a simple and
1,2-Amino alcohols are among the most valuable chiral
building blocks for asymmetric synthesis and catalysis.1
A large number of chiral auxiliaries and ligands hold 1,2-
amino alcohols as stereogenic fragments (Figure 1).
Oxazolidinone chiral auxiliaries (1), BOX ligands (2), and
Salen-type ligands (3) exemplify the importance of these
structures as building blocks.2 Furthermore, â-amino
alcohols are efficient catalysts for the ligand accelerated
addition of dialkyzinc species to carbonyls.3
Our group has developed families of modular chiral
amino alcohols for this and other transformations, start-
ing from synthetic enantiopure epoxides.4 Among these,
the bulky 2-piperidino-1,1,2-triphenylethanol (4), con-
taining a diphenylcarbynol moiety, is one of the most
active catalysts for the asymmetric addition of dialkyl
† Universitat de Barcelona.
‡ Institute of Chemical Research of Catalonia.
(1) For a review on catalytic applications of amino alcohols, see:
Fache, F.; Schulz, E.; Tommasino, L. M.; Lemaire, M. Chem. Rev. 2000,
100, 2159-2232.
(2) For references to selected structures, see: (a) Davies, S. G.;
Sanganee, H. J. Tetrahedron: Asymmetry 1995, 6, 671-674. (b) Evans,
D. A.; Scheidt, K. A.; Johnston, J. N.; Willis, M. C. J. Am. Chem. Soc.
2001, 123, 4480-4491. (c) Legros, J.; Bolm, C. Angew. Chem., Int. Ed.
2004, 43, 4225-4228.
(3) (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis; John
Wiley & Sons: New York, 1994. (b) Chen, Y. K.; Costa, A. M.; Walsh,
P. J. J. Am. Chem. Soc. 2001, 123, 5378-5379.
(5) (a) Sola`, L.; Reddy, K. S.; Vidal-Ferran, A.; Moyano, A.; Perica`s,
M. A.; Riera, A.; Alvarez-Larena, A.; Piniella, J. F. J. Org. Chem. 1998,
63, 7078-7082. (b) Fontes, M.; Verdaguer, X.; Sola`, L.; Perica`s, M. A.;
Riera, A. J. Org. Chem. 2004, 69, 2532-2543.
(6) Caldentey, F. X.; Jimeno, C.; Perica`s, M. A. Institute of Chemical
Research of Catalonia (ICIQ), 2004.
(7) Amino alcohols can be also synthesized from mandelic acid.
However, from the point of view of diversity, this approach has the
same limitation as the amino acid route. See: Braun, M.; Fleischer,
R.; Mai, B.; Schneider, M.-A.; Lachenicht, S. Adv. Synth. Catal. 2004,
346, 474-482.
(8) Bach, J.; Berenguer, R.; Garcia, J.; Loscertales, T.; Vilarrasa, J.
J. Org. Chem. 1996, 61, 9021-9025.
(4) (a) Vidal-Ferran, A.; Moyano, A.; Perica`s, M. A.; Riera, A. J. Org.
Chem. 1997, 62, 4970-4982. (b) Vidal-Ferran, A.; Moyano, A.; Perica`s,
M. A.; Riera, A. Tetrahedron Lett. 1997, 38, 8773-8776. (c) Reddy, K.
S.; Sola`, L.; Moyano, A.; Perica`s, M. A.; Riera, A. J. Org. Chem. 1999,
64, 3969-3974. (d) Reddy, K. S.; Sola`, L.; Moyano, A.; Perica`s, M. A.;
Riera, A. Synthesis 2000, 2000, 165-176. (e) Jimeno, C.; Pasto, M.;
Riera, A.; Perica`s, M. A. J. Org. Chem. 2003, 68, 3130-3138. (f) Pasto´,
M.; Riera, A.; Perica`s, M. A. Eur. J. Org. Chem. 2002, 2337-2341. (g)
Garc´ıa-Delgado, N.; Fontes, M.; Perica`s, M. A.; Riera, A.; Verdaguer,
X. Tetrahedron: Asymmetry 2004, 15, 2085-2090.
10.1021/jo050960+ CCC: $30.25 © 2005 American Chemical Society
Published on Web 08/04/2005
7426
J. Org. Chem. 2005, 70, 7426-7428