T. Uchida, T. Katsuki / Tetrahedron Letters 50 (2009) 4741–4743
4743
10. Selected recent examples: (a) Tominaga, S.; Oi, Y.; Kato, T.; An, D. K.; Okamoto,
S. Tetrahedrone Lett. 2004, 45, 5585–5588; (b) Larsen, A. O.; Leu, W.; Oberhuber,
C. N.; Campbell, J. E.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 11130–11131.
11. Jensen, D. R.; Sigmann, M. S. Org. Lett. 2003, 5, 63–65.
reactions that proceed through a highly ordered transition state
proceed with high enantioselectivity.12,15,20 Although the mecha-
nism of the present reaction is unclear, it is likely that the reaction
also proceeds through an ordered transition state, from the catalyst
structure bearing a precoordinating substituent. Thus, we exam-
ined the reaction of 2-cyclohexen-1-one; however, the reaction
12. For recent reviews on asymmetric conjugate addition reaction, see: (a)
Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chem. Rev.
2008, 108, 2796–2823; (b) Christoffers, J.; Koripelly, G.; Rosiak, A.; Rössle, M.
Synthesis 2007, 1279–1300; (c) López, F.; Minnaard, A. J.; Feringa, B. L. Acc.
Chem. Res. 2007, 40, 179–188; (d) Alexakis, A.; Benhaim, C. Eur. J. Org. Chem.
2002, 3221–3236; (e) Krause, N.; Hoffmann-Röder, A. Synthesis 2001, 171–196;
(f) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346–353; (g) Tomioka, K.; Nagaoka, Y.
In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H.,
Eds.; Springer: Berlin, 1999; pp 1105–1120; (h) Yamaguchi, M. In
Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H.,
Eds.; Springer: Berlin, 1999; pp 1121–1139.
13. For recent selected examples, see: (a) Clavier, H.; Coutable, L.; Toupet, L.;
Guillemin, J.-C.; Mauduit, M. J. Organomet. Chem. 2005, 690, 5237–5254; (b)
Clavier, H.; Coutable, L.; Guillemin, J.-C.; Mauduit, M. Tetrahedron: Asymmetry
2005, 921–924; (c) Lee, K.-S.; Brown, M. K.; Hird, A. W.; Hoveyda, A. H. J. Am.
Chem. Soc. 2006, 128, 7182–7184; (d) May, T. L.; Brown, M. K.; Hoveyda, A. H.
Angew. Chem., Int. Ed. 2008, 47, 7358–7362; (e) Martin, D.; Kehrli, S.;
d’Augustin, M.; Clavier, H.; Mauduit, M.; Alexakis, A. J. Am. Chem. Soc. 2006,
128, 8416–8417; (f) Matsumoto, Y.; Tomioka, K. Tetrahedron Lett. 2006, 47,
5843–5846; (g) Matsumoto, Y.; Yamada, K.-I.; Tomioka, K. J. Org. Chem. 2008,
73, 4578–4581.
14. (a) Faller, J. W.; Fontaine, P. P. Organometallics 2006, 25, 5887–5893; (b) Winn,
C. L.; Guillen, F.; Pytkowicz, J.; Roland, S.; Mangeney, P.; Alexakis, A. J.
Organomet. Chem. 2005, 690, 5672–5695.
15. (a) Ito, K.; Eno, S.; Saito, B.; Katsuki, T. Tetrahedron Lett. 2005, 46, 3981–3985;
(b) Hajra, A.; Yoshikai, N.; Nakamura, E. Org. Lett. 2006, 8, 4153–4155.
16. Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31,
805–818.
17. Typical experimental procedure for the asymmetric 1,4-conjugate addition of
diethylzinc to enones in the presence of imidazolium salt 4b: Imidazolium salt 4b
(3.5 mg, 0.05 mmol) and t-BuONa (0.5 mg, 0.055 mmol) were stirred in THF
(1.0 mL) under a nitrogen atmosphere at room temperature. After 30 min,
Cu(OTf)2 (1.8 mg, 0.05 mmol) was added to the mixture, and the whole
mixture was stirred for another 30 min. THF was removed in vacuo, and the
residue was re-dissolved in 25 mL of DMF. Chalcone (1.0 g, 5.0 mmol) was
added to the mixture, and the mixture was cooled to ꢀ10 °C. Then, a hexane
solution of diethylzinc (7.0 mL, 7.5 mmol) was slowly added to the reaction
mixture. After 90 min, the reaction was quenched with saturated NH4Cl aq
(5.0 mL), and the mixture was extracted twice with AcOEt (5.0 mL). The
combined organic phases were washed with saturated brine (2 ꢁ 5.0 mL) and
dried over MgSO4. After removal of the solvent, the residue was
chromatographed on silica gel (hexane/AcOEt = 50:1 to 20:1) to afford the
product (1.2 g, 98%). The enantiomeric excess of the product was determined
to be 97% by HPLC analysis using DAICEL CHIRALCEL AD-H (hexane/i-
PrOH = 99:1).
showed poor selectivity.22 This result suggests that a
p-complex
intermediate formed from the s-cis isomer of enone participates
in the present reaction.15b
In conclusion, we introduced new bidentate NHC ligands that
can be prepared in a modular fashion, and we revealed that they
serve as efficient chiral auxiliaries for the copper-catalyzed asym-
metric conjugate addition reaction of dialkylzinc to acyclic enones.
We believe that this study expands the utility of chiral bidentate
NHC ligands in asymmetric synthesis.
Acknowledgments
The authors acknowledge the financial support from a Grant-in-
Aid for Scientific Research on Priority Areas 18037056 ‘Advanced
Molecular Transformations of Carbon Resources’ and Specially Pro-
moted Research 18002011 from the Ministry of Education, Culture,
Sports, Science and Technology, Japan.
References and notes
1. For recent reviews on the catalysis of transition metal–NHC complexes, see: (a)
Douthwaite, R. E. Coord. Chem. Rev. 2007, 251, 702–717; (b) Gade, L. H.;
Bellemin-Laponnaz, S. Coord. Chem. Rev. 2007, 251, 718–725; (c) Colacino, E.;
Martinez, J.; Lamaty, F. Coord. Chem. Rev. 2007, 251, 726–764; (d) Dragutan, V.;
Dragutan, I.; Delaude, L.; Demonceau, A. Coord. Chem. Rev. 2007, 251, 765–794;
(e) Nolan, S. P. N-Heterocyclic Carbenes in Synthesis; Wiley-VCH: Weinheim,
Germany, 2006; (f) Díez-González, S.; Nolan, S. P. Annu. Rep. Chem., Sect. B 2005,
101, 171–191; (g) César, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem. Soc. Rev.
2004, 33, 619–636.
2. For recent reviews on the catalysis of the NHC compounds, see: (a) Enders, D.;
Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606–5655; (b) Marion, N.;
Díez-González, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988–3000; (c)
Zeitler, K. Angew. Chem., Int. Ed. 2005, 44, 7506–7510; (d) Enders, D.;
Balensiefer, T. Acc. Chem. Res. 2004, 37, 534–541; (e) Nair, V.; Bindu, S.;
Sreekumar, V. Angew. Chem., Int. Ed. 2004, 43, 5130–5135.
3. (a) Wanzlick, H. W. Angew. Chem., Int. Ed. Engl. 1962, 1, 75–80; (b) Wanzlick, H.
W.; Esser, F.; Kleiner, H. J. Chem. Ber. 1963, 96, 1208–1212; (c) Wanzlick, H.-W.;
Schönherr, H.-J. Angew. Chem., Int. Ed. Engl. 1968, 7, 141–142.
4. (a) Öfele, K. J. Organomet. Chem. 1968, 12, P42–P43; (b) Öfele, K.; Herberhold, M.
Angew. Chem., Int. Ed. Engl. 1970, 9, 739–740; (c) Öfele, K. J. Organomet. Chem.
1970, 22, C9–C11.
5. Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361–363.
6. (a) Díez-González, S.; Nolan, S. P. Coord. Chem. Rev. 2007, 251, 874–883; (b)
Hermann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290–1309; (c) Green, J. C.;
Scurr, R. G.; Arnold, P. L.; Cloke, G. N. Chem. Commun. 1997, 20, 1963–1964.
7. (a) Herrmann, W. A.; Elison, M.; Fischer, J.; Köcher, C.; Artus, G. R. J. Angew.
Chem., Int. Ed. Engl. 1995, 34, 2371–2374; (b) Enders, D.; Breuer, K.; Raabe, G.;
Runsink, J.; Teles, J. H.; Melder, J.-P.; Ebel, K.; Brode, S. Angew. Chem., Int. Ed.
Engl. 1995, 34, 1021–1023.
8. Selected recent examples: (a) Powell, M. T.; Hou, D.-R.; Perry, M. C.; Cui, X.;
Burgess, K. J. Am. Chem. Soc. 2001, 123, 8878–8879; (b) Perry, M. C.; Cui, X.;
Powell, M. T.; Hou, D.-R.; Reibenspies, J. H.; Burgess, K. J. Am. Chem. Soc. 2003,
125, 113–123; (c) Bappert, E.; Helmchen, G. Synlett 2004, 1789–1793; (d) Song,
C.; Ma, C.; Ma, Y.; Feng, W.; Ma, S.; Chai, Q.; Andrus, M. B. Terahedron Lett. 2005,
46, 3241–3244.
9. Selected recent examples: (a) Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Org. Lett.
2001, 3, 3225–3228; (b) Van Veldhuizen, J. J.; Garber, S. B.; Kingsbury, J. S.;
Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 4954–4955; (c) Gillingham, D. G.;
Kataoka, O.; Garber, S. B.; Hoveyda, A. H. J. Am. Chem. Soc. 2004, 126, 12288–
12290; (d) Van Veldhuizen, J. J.; Campbell, J. E.; Giudici, R. E.; Hoveyda, A. H. J.
Am. Chem. Soc. 2005, 127, 6877–6882; (e) Funk, T. W.; Berlin, J. M.; Grubbs, R. H.
J. Am. Chem. Soc. 2006, 128, 1840–1846; (f) Berlin, J. M.; Goldberg, S. D.; Grubbs,
R. H. Angew. Chem., Int. Ed. 2006, 45, 7591–7595; (g) Fournier, P.-A.; Collins, S.
K. Organometallics 2007, 26, 2945–2949.
18. The specific rotations of the products are given below: (a) 1,3-Diphenyl-1-
pentanone (97% ee): ½a D24
ꢂ
+7.1 (c 2.0, EtOH); lit.19a [96% ee, (S)-isomer: ½a 2D4
ꢂ
+6.07
(c 5.85, EtOH)] (Table 1, run 13). (b) 3-(4-Chlorophenyl)-1-phenyl-1-pentanone
(97% ee): ½a 2D4
ꢂ
+1.9 (c 2.0, EtOH); lit.14a [99% ee, (S)-isomer: ½a 2D4
ꢂ
+1.5 (c 1.13,
EtOH)] (Table 2, run 1). (c) 3-(4-Methoxyphenyl)-1-phenyl-1-pentanone (96%
ee): ½a 2D4
ꢂ
+15.9 (c 2.0, EtOH); lit.19a [96% ee (S)-isomer: ½a 2D4
ꢂ
+15.5 (c 0.98, EtOH)]
(Table 2, run 2). (d) 1-(4-Methoxyphenyl)-3-phenyl-pentanone (96% ee): ½a D25
ꢂ
ꢀ2.3 (c 2.1, EtOH); lit.19a [97% ee (S)-isomer: ½a 2D4
ꢂ
-4.0 (c 2.2, EtOH)] (Table 2, run
4). (e) 1,3-Diphenyl-1-butanone (95 % ee): ½a D25
ꢂ
+13.4 (c 2.0, CCl4); lit.19b [82% ee
(R)-isomer: ½a 2D5
ꢀ13.5 (c 1.0, CCl4)] (Table 2, run 5). (f) 4-Phenyl-2-hexanone
ꢂ
(69% ee): ½a 2D4
ꢂ
ꢀ20.9 (c 2.0, EtOH); lit.15a [90% ee, (S)-isomer; ½a 2D4
ꢂ
+25.4 (c 0.16,
EtOH)] (Table 2, run 12).
19. (a) Shi, M.; Wang, C.-J.; Zhang, W. Chem. Eur. J. 2004, 10, 5507–5516; (b)
Kanazawa, Y.; Tsuchiya, Y.; Kobayashi, K.; Shiomi, T.; Itoh, J.-I.; Kikuchi, M.;
Yamamoto, Y.; Nishiyama, H. Chem. Eur. J. 2006, 12, 63–71; (c) Alexakis, A.;
Benhaim, C.; Rosset, S.; Humam, M. J. Am. Chem. Soc. 2002, 124, 5262–
5263.
20. (a) Harutyunyan, S. R.; López, F.; Browne, W. R.; Correa, A.; Peña, D.; Badorrey,
R.; Meetsma, A.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2006, 128, 9103–
9118; (b) García, J. M.; González, A.; Kardak, B. G.; Odriozola, J. M.; Oiarbide,
M.; Razkin, J.; Palomo, C. Chem. Eur. J. 2008, 14, 8768–8771.
21. With acyclic enones ees of conjugate addition are generally <90%. For
exceptions, see: (a) Hu, X.; Chen, H.; Zhang, X. Angew. Chem., Int. Ed. 1999,
38, 3518–3521; (b) Mizutani, H.; Degrado, S. J.; Hoveyda, A. H. J. Am. Chem. Soc.
2002, 124, 779–781; (c) Duncan, A. P.; Leighton, J. L. Org. Lett. 2004, 6, 4117–
4119; (d) Takahashi, Y.; Yamamoto, Y.; Katagiri, K.; Danjo, H.; Yamaguchi, K.;
Imamoto, T. J. Org. Chem. 2005, 70, 9009–9012.
22. The reaction of 2-cyclohexen-1-one and diethylzinc in the presence of 4f at
ꢀ10 °C for 24 h was poorly selective (3% ee, 54% yield).