LETTER
Total Synthesis of arabino-Phytosphingosine
2185
SiMe2Ph
BocN
(9) (a) Chiu, H.-Y.; Tzou, D.-L. M.; Patkar, L. N.; Lin, C.-C. J.
Org. Chem. 2003, 68, 5788. (b) Plettenburg, O.; Bodmer-
Narkevitch, V.; Wong, C.-H. J. Org. Chem. 2002, 67, 4559.
(c) Graziani, A.; Passacantilli, P.; Piancatelli, G.; Tani, S.
Tetrahedron: Asymmetry 2000, 11, 3921.
C13H27
O
(10) (a) Ndakala, A. J.; Hashemzadeh, M.; So, R. C.; Howell, A.
R. Org. Lett. 2002, 4, 1719. (b) Azuma, H.; Tamagaki, S.;
Ogino, K. J. Org. Chem. 2000, 65, 3538. (c) Takikawa, H.;
Muto, S.-E.; Mori, K. Tetrahedron 1998, 54, 3141.
(11) (a) Kang, S. H.; Hwang, Y. S.; Lee, H. S. Bull. Korean
Chem. Soc. 2002, 23, 1195. (b) Ayad, T.; Genisson, Y.;
Verdu, A.; Baltas, M.; Gorrichon, L. Tetrahedron Lett. 2003,
44, 579. (c) Nakamura, T.; Shiozaki, M. Tetrahedron 2001,
57, 9087. (d) Martin, C.; Prunck, W.; Bortolussi, M.; Bloch,
R. Tetrahedron: Asymmetry 2000, 11, 1585.
R
H
R
H
SiMe2Ph
PhMe2Si
Ox
C13H27
C13H27
Ox
R
R
H
H
H
H
C13H27
C
13H27
(12) (a) Brown, H. C.; Narasimhan, S.; Somayaji, V. J. Org.
Chem. 1983, 48, 3091. (b) Corey, E. J.; Tius, M. A.; Das, J.
J. Am. Chem. Soc. 1980, 102, 7612.
SiMe2Ph
SiMe2Ph
A
B
(13) (a) Fleming, I.; Sanderson, P. E. J. Tetrahedron Lett. 1987,
28, 4229. (b) Tamao, K.; Ishida, N.; Tanaka, T.; Kumada,
M. Organometallics 1983, 2, 1694. (c) Kolb, H. C.; Ley, S.
V.; Slawin, A. M. Z.; Williams, D. J. J. Chem. Soc., Perkin
Trans. 1 1992, 2735. (d) Heo, J.-N.; Holson, E. B.; Roush,
W. R. Org. Lett. 2003, 5, 1697.
SiMe2Ph
SiMe2Ph
C13H27
C13H27
O
O
O
O
BocN
BocN
(14) (a) Panek, J. S.; Sparks, M. A. Tetrahedron: Asymmetry
1990, 1, 801. (b) Panek, J. S.; Yang, M.; Solomon, J. S. J.
Org. Chem. 1993, 58, 1003.
(15) Gao, G.; Moore, D.; Xie, R.-G.; Pu, L. Org. Lett. 2002, 4,
4143.
(not observed)
(only product)
Scheme 5 Stereochemical model for epoxidation.
(16) (a) Kazmaier, U. Angew. Chem., Int. Ed. Engl. 1994, 33,
998. (b) Kazmaier, U. J. Org. Chem. 1996, 61, 3694.
(17) Mohamed, M.; Brook, M. A. Helv. Chim. Acta 2002, 85,
4165.
(18) Panek, J. S.; Zhang, J. J. Org. Chem. 1993, 58, 294.
(19) Dondoni, A.; Perrone, D. Org. Synth. 2000, 77, 64.
(20) (a) Fleming, I.; Sarkar, A. K.; Thomas, A. P. J. Chem. Soc.,
Chem. Commun. 1987, 157. (b) Murphy, P. J.; Russel, A. T.;
Procter, G. Tetrahedron Lett. 1990, 31, 1055.
chemistry of the propargyl alcohol 5, prepared through an
asymmetric catalysis. Also, it is the first time to synthe-
size allyl silane such as 321 without depending on chiral
resolution.
Acknowledgment
This work was financially supported by grant No. R02-2002-000-
00097-0 from the Korea Science & Engineering Foundation and
Center for Molecular Design and Synthesis.
(21) Experimental Procedure for the Synthesis of Allylsilane
3.
A freshly prepared solution of LDA (2.1 equiv) in THF
under argon was cooled down to –78 °C. To the above
solution, the allylic ester 4 was added rapidly. The resulting
mixture was left to stir for 3 min and then treated with 3.0
equiv of TMSCl. This solution was allowed to warm to r.t.
and stirred for further 2 h. The reaction was quenched with
dilute aq HCl and extracted with EtOAc. The extract was
dried over MgSO4, filtered and concentrated under reduced
pressure to give crude carboxylic acid. The crude product
was dissolved in the mixed solvent of MeOH–benzene (1:1)
and treated with TMS-diazomethane (2.0 equiv). The
mixture was stirred for 30 min at r.t. and concentrated in
vacuo to give crude g,d-unsaturated methyl ester 3. The
crude ester 3 was purified by silica gel column
References
(1) Hannun, Y. A.; Bell, R. M. Science 1989, 243, 500.
(2) Naroti, T.; Morita, M.; Akimoto, K.; Koezuka, Y.
Tetrahedron 1994, 50, 2771.
(3) (a) Grag, H. S.; Sharma, M.; Bhakuni, D. S.; Pramanik, B.
N.; Bose, A. K. Tetrahedron Lett. 1992, 33, 1641.
(b) Wong, C. H.; Kamitakahara, H.; Suzuki, T.; Nishigori,
N.; Suzuki, Y.; Kamie, O. Angew. Chem. Int. Ed. 1998, 37,
1524.
(4) Kobayashi, S.; Furuta, T.; Hayashi, T.; Nishijima, M.;
Hanada, K. J. Am. Chem. Soc. 1998, 120, 908.
(5) Marinier, A.; Martel, A.; Banville, J.; Bachand, C.;
Remillard, R.; Lapointe, P.; Turmel, B.; Menard, M.; Harte,
W. E. Jr.; Kim Wright, J. J.; Todderud, G.; Tramposch, K.
M.; Bajorath, J.; Hollenbaugh, D.; Aruffo, A. J. Med. Chem.
1997, 40, 3234.
chromatography using EtOAc–n-hexane = 1:8 as eluents. 1H
NMR (300 MHz, CDCl3): d = 7.45–7.48 (m, 2 H), 7.24–7.33
(m, 3 H), 5.29 (m, 1 H), 5.14 (m, 1 H), 4.87 (br d, 1 H), 4.31
(br t, 1 H), 3.52 (s, 3 H), 2.05 (m, 1 H), 1.95 (m, 2 H), 1.38
(s, 9 H), 1.24 (br s, 24 H), 0.86 (t, 3 H), 0.31 (d, 6 H). 13
C
NMR (75 MHz, CDCl3): d = 0.3, 1.1, 12.9, 22.8, 23.1, 28.4,
30.1, 30.6, 30.7, 32.5, 33.7, 50.4, 53.5, 71.0, 127.8, 128.4,
128.9, 133.6, 133.9, 140.4, 158.1, 170.9. MS (EI): m/z calcd
for C31H53NO4Si: 544.29; found: 545.3900.
(6) Costantino, V.; Fattorusso, E.; Mangoni, A.; Rosa, M. D.;
Ianaro, A. J. Am. Chem. Soc. 1997, 119, 12465.
(7) Higuchi, R.; Inukai, K.; Jhou, J. X.; Honda, M.; Komori, T.;
Tsuji, S.; Nagai, Y. Liebigs Ann. Chem. 1993, 359.
(8) Li, H.; Matsunaga, S.; Fusetani, N. Tetrahedron 1995, 51,
2273.
(22) Experimental Procedure for the Synthesis of arabino-
Phytosphingosine.
To a solution of acetonide 9 in CH2Cl2, 8 equiv of NaHCO3
was added. The resulting mixture was cooled to 0 °C and
Synlett 2005, No. 14, 2183–2186 © Thieme Stuttgart · New York