Macromolecules, Vol. 38, No. 20, 2005
Communications to the Editor 8129
though the polymer in H5(9) carries no mesogenic units.
The long-range order of the polymer chains thus must
have been induced by the perovskite when they are
intercalated into the lead bromide layers.
Acknowledgment. This work was partly supported
by the Research Grants Council of Hong Kong (603505,
603304, 664903, 6085/62P, and 6121/01P) and the
National Science Foundation of China (N_HKUST-
606_03). B.Z.T. thanks the support from the Cao Guang-
biao Foundation of the Zhejiang University.
The PL peaks of the solid films of polyamine P3(9)
and model hybrid (C4H9NH3)2PbBr4 are located at 458
and 433 nm, respectively (SI, Figure S2). The PL
spectrum of hybrid H5(9) peaks at 466 nm with no
shoulder at 433 nm, indicating that an efficient energy
transfer has taken place in the polyacetylene-perovs-
kite hybrid. The violet light of 433 nm emitted from the
perovskite framework has been absorbed by or trans-
ferred to the polyacetylene chains, the radiative decay
of whose singlet excited state leads to the blue light
emission at 466 nm.
Supporting Information Available: Synthesis and char-
acterization details for 2(m), P2(m)-P4(m), and H5(m); TGA
thermograms of P2(9)-P4(9) and H5(m) and PL spectra of the
films of P3(9), H5(9), and (BuNH3)2PbBr2. This material is
References and Notes
(1) For reviews, see: (a) Mitzi, D. B. Prog. Inorg. Chem. 1999,
48, 1. (b) Mitzi, D. B. J. Mater. Chem. 2004, 14, 2355. (c)
Gebauer, T.; Schmid, G. Z. Anorg. Allg. Chem. 1999, 625,
1124. (d) Hong, M. C. Chin. J. Inorg. Chem. 2002, 18, 24.
(2) (a) Mitzi, D. B.; Feild, C. A.; Harrison, W. T. A.; Guloy, A.
M. Nature (London) 1994, 369, 467. (b) Kagan, C. R.; Mitzi,
D. B. Dimitrakopoulos, C. Science 1999, 286, 945.
To estimate PL efficiencies of the polymers and
hybrids, their emission spectra are measured in dilute
THF solutions. Similar to the solid films, the solutions
of the polymers and hybrids emit blue light when
photoexcited. Examples of the PL spectra are given in
Figure 3B. Using 9,10-diphenylanthracene as stan-
dard,12 ΦPL of polyimide P2(9) is estimated to be 21%,
which is about half of that of its parent form PPO.13
This is probably caused by the quenching effect of its
phthalimido pendant. Removal of the imido group leads
to an increase in the ΦPL [32% for P3(9)]. The quater-
nization and hybridization help to enhance ΦPL, with
ΦPL of the hybrid being boosted to a value as high as
62%. When the polyamine is quaternized by the acid,
the polymer is converted to a polysalt or polyelectrolyte.
Electrical repulsion of the charged polyelectrolyte chains
reduces the chain interaction of P4(9) and enhences its
ΦPL. When the polysalt chains are sheathed in the
perovskite layers, the chain interaction is further
weakened, hence the even higher ΦPL of the hybrid.
The PL spectra of polymers P2(3)-P4(3) and hybrid
H5(3) are similar to those of their congeners with the
longer spacer (m ) 9) discussed above. Their ΦPL values
are lower,14 in agreement with our early observation
that ΦPL of a polyacetylene decreases with a decrease
in its spacer length.5,9,15 In this series again, quater-
nization and hybridization boost the emission effi-
ciency: the ΦPL (47%) of hybrid H5(3) is ∼2-fold higher
than that of its polyamine parent P3(3) (24%).
(3) (a) Xiao, Z. L.; Chen, H. Z.; Shi, M. M.; Wu, G.; Zhou, R. J.;
Yang, Z. S.; Wang, M.; Tang, B. Z. Mater. Sci. Eng. B 2005,
117, 313. (b) Mercier, N.; Riou, A. Chem. Commun. 2004,
844. (c) Naito, T.; Inabe, T. J. Solid State Chem. 2003, 176,
243. (d) Cheng, Z. Y.; Wang, Z.; Xing, R. B.; Han, Y. C.; Lin,
J. Chem. Phys. Lett. 2003, 376, 481. (e) Zhu, X. H.; Mercier,
N.; Frere, P.; Blanchard, P.; Roncali, J.; Allain, M.; Pasquier,
C.; Riou, A. Inorg. Chem. 2003, 42, 5330. (f) Venkataraman,
N. V.; Bhagyalakshmi, S.; Vasudevan, S.; Seshadri, R. Phys.
Chem. Chem. Phys. 2002, 4, 4533. (g) Takeoka, Y.; Asai, K.;
Rikukawa, M.; Sanui, K. Mol. Cryst. Liq. Cryst. 2002, 379,
383. (h) Shi, Y. J.; Chen, X. T.; Cai, C. X.; Zhang, Y.; Xue,
Z. L.; You, X. Z.; Peng, S. M.; Lee, G. H. Inorg. Chem.
Commun. 2002, 5, 621. (i) Kosuge, H.; Okada, S.; Oikawa,
H.; Nakanishi, H. Mol. Cryst. Liq. Cryst. 2002, 377, 13. (j)
Papavassiliou, G. C.; Mousids, G. A.; Koutselas, I. B.;
Papaionannou, G. J. Int. J. Mod. Phys. B 2001, 15, 3727. (l)
Lu, C. Z.; Wu, C. D.; Lu, S. F.; Liu, J. C.; Wu, Q. J.; Zhuang,
H. H.; Huang, J. S. Chem. Commun. 2002, 152. (m) Shi, Y.
J.; Xu, Y.; Zhang, Y.; Huang, B.; Zhu, D. R.; Jin, C. M.; Zhu,
H. G.; Yu, Z.; Chen, X. T.; You, X. Z. Chem. Lett. 2001, 678.
(n) Guloy, A. M.; Tang, Z. J.; Miranda, P. B.; Srdanov, V. I.
Adv. Mater. 2001, 13, 833.
(4) (a) Mitzi, D. M.; Chondroudis, K.; Kagan, C. R. Inorg. Chem.
1999, 38, 6246. (b) Chondroudis, K.; Mitzi, D. B. Chem.
Mater. 1999, 11, 3028.
(5) (a) Lam, J. W. Y.; Tang, B. Z. Acc. Chem. Res., in press. (b)
Lam, J. W. Y.; Tang, B. Z. J. Polym. Sci., Part A: Polym.
Chem. 2003, 41, 2607.
In summary, in this work, we succeeded in hybrid-
izing functional polyacetylenes with lead bromide per-
ovskite. The resultant hybrids H5(m) are soluble, film
forming, and thermally stable. The provskite induces
the nonmesogenic polyacetylene chains to align like
liquid crystals within the inorganic layers. Photoenergy
is efficiently transferred from the perovskite framework
to the polyacetylene chains, and the chain interactions
are supressed by the segregation of the polymer chains
in separate perovskite layers. The energy transfer and
chain separation both help enhance the light emission
efficiency of the hybrids. To our knowledge, this is the
first successful example of constructing a conjugated
polymer-perovskite hybrid in which both organic and
inorganic components play active, constructive roles in
boosting their functional performances. Noting that the
conjugated polyacetylene chains are electro- and pho-
toactive and that the perovskite layers possess high
charge mobilities, the hybrids are envisioned to serve
as active layers for fabricating efficient light-emitting
diodes and photovoltaic cells.16 These possibilities are
under exploration in collaboration with colleagues in the
departments of physics and electrical and electronic
engineering of our universities.
(6) Ha¨ussler, M.; Zheng, R.; Lam, J. W. Y.; Tong, H.; Dong, H.;
Tang, B. Z. J. Phys. Chem. B 2004, 108, 10645.
(7) (a) Silverstein, R. M.; Webster, F. X. Spectrometric Identi-
fication of Organic Compounds; Wiley: New York, 1998. (b)
Prestsch, E.; Buhlmann, P.; Affolter, C. Structure Determi-
nation of Organic Compounds: Tables of Spectral Data;
Springer: New York, 2000.
(8) Cheng, Z. Y.; Gao, B. X.; Pang, M. L.; Wang, S. Y.; Han, Y.
C.; Lin, J. Chem. Mater. 2003, 15, 4705.
(9) (a) Dong, Y.; Lam, J. W. Y.; Peng, H.; Cheuk, K. L.; Kwok,
H. S.; Tang, B. Z. Macromolecules 2004, 37, 6408. (b) Lam,
J. W. Y.; Dong, Y. P.; Law, C. C. W.; Dong, Y. Q.; Cheuk, K.
L.; Lai, L. M.; Li, Z.; Sun, J.; Chen, H.; Zheng, Q.; Kwok, H.
S.; Wang, M.; Feng, X.; Shen, J.; Tang, B. Z. Macromolecules
2005, 38, 3290. (c) Ye, C.; Xu, G.; Yu, Z.-G.; Lam, J. W. Y.;
Jang, J. H.; Peng, H.-L.; Tu, Y.-F.; Liu, Z.-F.; Jeong, K.-U.;
Cheng, S. Z. D.; Chen, E.-Q.; Tang, B. Z. J. Am. Chem. Soc.
2005, 127, 7668.
(10) (a) Era, M.; Kobayashi, T.; Noto, M. Curr. Appl. Phys. 2005,
5, 67. (b) Tanaka, K.; Takahashi, T.; Ban, T.; Kondo, T.;
Uchida, K.; Miura, N. Solid State Commun. 2003, 127, 619.
(c) Matsui, T.; Yamaguchi, A.; Takeoka, Y.; Rikukawa, M.;
Sanui, K. Chem. Commun. 2002, 1094.
(11) (a) Lam, J. W. Y.; Kong, X.; Dong, Y.; Cheuk, K. K. L.; Xu,
K.; Tang, B. Z. Macromolecules 2000, 33, 5027. (b) Kong,
X.; Tang, B. Z. Chem. Mater. 1998, 10, 3352. (c) Tang, B.
Z.; Kong, X.; Wan, X.; Peng, H.; Lam, W. Y.; Feng, X. D.;
Kwok, H. S. Macromolecules 1998, 31, 2419.