bromides, through separate Pd- and Ni-catalyzed reactions,5
sequential Negishi cross-coupling reactions of diorganozinc
reagents with iodoaryl nonaflates6a and zinc phenoxides with
aryl triflates.6b Anhydrous reaction conditions are necessary in
these procedures, and purification of biaryl intermediates by
column chromatography is required. The reactivity of the
organometallic reagents can also be incompatible with certain
electrophilic functional groups (e.g., carbonyls, enones). Herein,
we describe a concise, practical, and high-yielding synthesis of
unsymmetrical terphenyls by employing sequential chemose-
lective Suzuki-Miyaura (SM) reactions.7 This is envisaged to
have a much broader scope; aryl precursors are widely available,
easy to handle, and most functional groups can be accom-
modated by the system.
A Practical and General Synthesis of
Unsymmetrical Terphenyls
Jose M. Antelo Miguez,† Luis Angel Adrio,
Antonio Sousa-Pedrares,† Jose M. Vila,† and
King Kuok (Mimi) Hii*
Department of Chemistry, Imperial College London, Exhibition
Road, South Kensington SW7 2AZ, U.K., and Departamento de
Qu´ımica Inorga´nica, Facultad de Qu´ımica, UniVersidad de
Santiago de Compostela, E-15782, Spain
ReceiVed June 19, 2007
Success of the methodology is dependent on the chemose-
lectivity of the first arylation. Monoarylation of symmetrical
diiodo- and dibromoarenes is highly sensitive to the reaction
conditions.8 Equally, attempted monoarylation of bromoiodo-
benzene under harsh conditions can lead to mixtures of mono-
and diarylated products.9 In this work, the chemoselectivity of
monoarylation was achieved by using 4-, 3-, and 2-bromochlo-
robenzenes (1a, 1b, and 1c, respectively) as reactive substrates.
Selective substitution of the bromide can be achieved at room-
temperature using “ligandless” palladium catalysts:10 using Pd-
(OAc)2 (1.5 mol %) and K3PO4 as base, the coupling was
effected in a biphasic system (DMF-H2O) at room tempera-
ture,11 without phase-transfer reagents (Scheme 1). The reaction
appears to be insensitive to air and the organic solvent-DMF
can be substituted by toluene or THF, without noticeable
A synthetic procedure was developed that enables sequential
chemoselective Suzuki-Miyaura cross-coupling of chloro-
bromobenzene with arylboronic acids. The first coupling is
achieved at room temperature using a ligandless palladium
catalyst. The chlorobiaryl product can then be subjected
directly to the second coupling, facilitated by the SPhos
ligand. Using this methodology, parallel synthesis of 32
unsymmetrical o-, m-, and p-terphenyl compounds was
accomplished in good to excellent overall yields.
(4) For selected examples: (a) Zhang, C.; Ondeyka, J. G.; Herath, K.
B.; Guan, Z.; Collado, J.; Pelaez, F.; Leavitt, P. S.; Gurnett, A.; Nare, B.;
Liberator, P.; Singh, S. B. J. Nat. Prod. 2006, 69, 710-712. (b) Roberti,
M.; Pizzirani, D.; Recanatini, M.; Simoni, D.; Grimaudo, S.; Di Cristina,
A.; Abbadessa, V.; Gebbia, N.; Tolomeo, M. J. Med. Chem. 2006, 49,
3012-3018. (c) Simoni, D.; Giannini, G.; Roberti, M.; Rondanin, R.;
Baruchello, R.; Rossi, M.; Grisolia, G.; Invidiata, F. P.; Aiello, S.; Marino,
S.; Cavallini, S.; Siniscalchi, A.; Gebbia, N.; Crosta, L.; Grimaudo, S.;
Abbadessa, V.; Di, Cristina, A.; Tolomeo, M. J. Med. Chem. 2005, 48,
4293-4299. (d) Ohkanda, J.; Lockman, J. W.; Kothare, M. A.; Qian, Y.;
Blaskovich, M. A.; Sebti, S. M.; Hamilton, A. D. J. Med. Chem. 2002, 45,
177-188.
With aromatic rings arranged differently in the two-
dimensional plane, o-, m-, and p-terphenyl compounds possess
unique photophysical properties that are often exploited in the
design of organic electroluminescent (OEL) devices1 and
liquid-crystalline materials.2 Terphenyls can also be found in
nature, predominantly as p-terphenyl derivatives,3 and synthetic
terphenyls are known to possess biological activities with
potential therapeutic values.4
(5) Cho, C. H.; Kim, I. S.; Park, K. Tetrahedron 2004, 60, 4589-4599.
(6) (a) Rottla¨nder, M.; Knochel, P. J. Org. Chem. 1998, 63, 203-208.
(b) Shimizu, H.; Manabe, K. Tetrahedron Lett. 2006, 47, 5927-5931.
(7) To the best of our knowledge, general synthesis of unsymmetrical
terphenyls by sequential Suzuki-Miyaura reactions has not been demon-
strated, although the regioselective cross-coupling of dihaloheteroaromatics
and arylboronic acids are known; see: (a) Beletskaya, I. P.; Tsvetkov, A.
V.; Latyshev, G. V.; Lukashev, N. V. Russian J. Org. Chem. 2003, 39,
1660-1667. (b) Cˇ ernˇa, I.; Pohl, R.; Klepeta´rˇva´, B.; Hocek, M. Org. Lett.
2006, 8, 5389-5392. (c) Conreaux, D.; Bossharth, E.; Monteiro, N.;
Desbordes, P.; Vors, J. P.; Balme, G. Org. Lett. 2007, 9, 271-274.
(8) (a) Sinclair, D. J.; Sherburn, M. S. J. Org. Chem. 2005, 70, 3730-
3733. (b) Uozumi, Y.; Kikuchi, M. Synlett 2005, 1775-1778. (c) Dong, C.
G.; Hu, Q. S. J. Am. Chem. Soc. 2005, 127, 10006-10007.
To date, general methodologies described for the synthesis
of unsymmetrical terphenyls include the coupling of bromoben-
zenesulfonates with arylboronic acids and arylmagnesium
† Universidad de Santiago de Compostela.
(9) (a) Liu, L.; Zhang, Y.; Xin, B. J. Org. Chem. 2006, 71, 3994-3997.
(b) Greenfield, A. A.; Butera, J. A.; Caufield, C. E. Tetrahedron Lett. 2003,
44, 2729.
(1) (a) Karastatiris, P.; Mikroyannidis, J. A.; Spiliopoulos, I. K.; Fakis,
M.; Persephonis, P. J. Polymer Sci. Part A: Polym. Chem. 2004, 42, 2214-
2224. (b) Ogawa, H.; Ohnishi, K.; Shirota, Y. Synth. Met. 1997, 91, 243-
245.
(10) (a) Felpin, F. X.; Ayad, T.; Mitra, S. Eur. J. Org. Chem. 2006,
2679-2690. See also: (b) Zim, D.; Monteiro, A. L.; Dupont, J. Tetrahedron
Lett. 2000, 41, 8199-8202. (c) Arcardi, A.; Cerichelli, G.; Chiarini, M.;
Correa, M.; Zorzan, D. Eur. J. Org. Chem. 2003, 4080-4086.
(11) The presence of water is crucial for this first SM reaction to proceed
at ambient temperature;the use of anhydrous DMF did not lead to any
significant product formation, unless the reaction temperature was raised
to >80 °C.
(2) For example: (a) Kula, P.; Dabrowski, R.; Kenig, K.; Chyczewska,
D. Ferroelectrics 2006, 343, 19. (b) Chen, B.; Baumeister, U.; Pelzl, G.;
Das, M. K.; Zeng, X.; Ungar, G.; Tschierske, C. J. Am. Chem. Soc. 2005,
127, 16578-16591. (c) Kiryanov, A. A.; Sampson, P.; Seed, A. J. J. Mater.
Chem. 2001, 11, 3068-3077.
(3) Liu, J. K. Chem. ReV. 2006, 106, 2209-2223.
10.1021/jo701308b CCC: $37.00 © 2007 American Chemical Society
Published on Web 08/24/2007
J. Org. Chem. 2007, 72, 7771-7774
7771