7142
H. K. Lee et al. / Tetrahedron Letters 46 (2005) 7139–7142
10. Reguerio-Ren, A.; Borzilleri, R. M.; Zheng, X.; Soong-
Hoon, K.; Johnson, J. A.; Fairchild, C. R.; Lee, F. Y. F.;
Long, B. H.; Vite, G. D. Org. Lett. 2001, 3, 2693.
11. (a) Kloeck, J. A.; Leschinsky, K. L. J. Org. Chem. 1976,
41, 4028; (b) Jager, U.; Sundermeyer, W.; Pritzkow, H.
Chem. Ber. 1987, 120, 1191; (c) Ducry, L.; Reinelt, S.;
Seiler, P.; Dietrich, F. Helv. Chim. Acta 1999, 82, 2432.
12. OÕConnell, J. F.; Rapoport, H. J. Org. Chem. 1992, 57,
4775.
7b with amines also provided sulfamides in high
yields.
In summary, the above studies have shown that aryl-
sulfamoyl imidazolium triflates can be readily prepared
from the corresponding chlorides and that they display
high reactivity with amines, in processes carried out
under neutral conditionsthat efficiently generate aryl-
sulfamide. Finally, this methodology was successfully
applied to the synthesis of arylsulfamide 3a, a potential
bioisotere of muraglitazar.
13. Beaudoin, S.; Kinsey, K. E.; Burns, J. F. J. Org. Chem.
2003, 68, 115.
14. (a) N-Methyl-N-(4-chlorophenyl)sulfamoyl-2-methylimid-
azole (6a): To a solution of 2-methylimidazole (5.5 g,
66 mmol) in CH3CN (50 mL) at 0 °C wasslowly added a
solution of N-methyl-N-(4-chlorophenyl)sulfamoyl chlo-
ride (2a) (7.2 g, 30 mmol) in CH3CN (15 mL). The mixture
waswarmed to room temperature and tsirred overnight,
and concentrated in vacuo. The residue was subjected to
silica gel chromatography (Hex–EA = 1:1) affording pure
Acknowledgements
We thank the Ministry of Science and Technology of
Korea and the Center for Biological Modulatorsfor
financial support.
1
6a as a white crystalline solid, 8.2 g (96%). Mp: 82 °C. H
NMR (500 MHz, CDCl3): d 2.15 (s, 3H), 3.33 (s, 3H), 6.91
(s, 1H), 7.03 (d, 2H, J = 6.60 Hz), 7.14 (s, 1H), 7.36 (d,
2H, J = 6.60 Hz). 13C NMR (125 MHz, CDCl3): d 15.13,
39.74, 119.63, 127.65, 128.40, 129.87, 134.99, 146.45.
(b) N-Methyl-N-(4-chlorophenyl)sulfamoyl-2,3-dimethyl-
imidazolium triflate (7a): To a solution of 6a (1.46 g,
5.1 mmol) in CH2Cl2 (20 mL) at 0 °C wasadded 0.61 mL
(5.36 mmol) of methyl triflate. After being stirred for 2 h
at 0 °C, the reaction mixture wasconcentrated in vacuo to
give 7a (2.29 g, 99%) asa white solid. 1H NMR (500 MHz,
CDCl3): d 2.70 (s, 3H), 3.55 (s, 3H), 3.96 (s, 3H), 7.19 (s,
1H), 7.30 (s, 1H), 7.43 (d, 2H, J = 6.70 Hz), 7.54 (d, 2H,
J = 6.70 Hz). 13C NMR (125 MHz, CDCl3): d 11.94,
36.59, 40.44, 120.68, 122.84, 129.14, 130.27, 136.00,
136.67, 146.50.
References and notes
1. Willson, T. M.; Brown, P. J.; Sternbach, D. D.; Henke, B.
R. J. Med. Chem. 2000, 43, 527.
2. Kopelovich, L.; Fay, J. R.; Glazer, R. I.; Crowell, J. A.
Mol. Cancer Ther. 2000, 1, 357.
3. AZ-242: McIntyre, J. A.; Castaner, J.; BayeÕs , M.Drugs
Future 2003, 28, 959.
4. KRP-297/MK-767: Nomura, M.; Kinoshita, S.; Satoh,
H.; Maeda, T.; Murakamo, K.; Tsunoda, M.; Miyachi,
H.; Awano, K. Bioorg. Med. Chem. Lett. 1999, 9, 533.
5. Sorbera, L. A.; Castaner, J.; Del Fresno, M.; Silvestre, J.
Drugs Future 2002, 27, 132.
6. (a) Sorbera, L. A.; Leeson, P. A.; Martin, L.; Castaner, J.
Drugs Future 2001, 26, 354; (b) Henke, B. R.; Blanchard,
S. G.; Brackeen, M. F.; Brown, K. K.; Cobb, J. E.;
Collins, L.; Harrington, W. W., Jr.; Hashim, M. A.; Hull-
Ryde, E. A.; Kaldor, I.; Kliewer, S. A.; Lake, D. H.;
Leesnitzer, L. M.; Lehmann, J. M.; Lenhard, J. M.;
Orband-Miller, L. A.; Miller, J. F.; Mook, R. A.; Noble,
S. A.; Oliver, W.; Parks, D. J.; Plunket, K. D.; Szewczyk,
J. R.; Willson, T. M. J. Med. Chem. 1998, 41, 5020.
7. Malinowski, J. M.; Bolesta, S. Clin. Ther. 2000, 22,
1151.
8. Gillies, P. S.; Dunn, C. J. Drugs 2000, 60, 333.
9. Devasthale, P. V.; Chen, S.; Jeon, Y.; Qu, F.; Shao, C.;
Wang, W.; Zhang, H.; Cap, M.; Farrelly, D.; Golla, R.;
Grover, G.; Harrity, T.; Ma, Z.; Moore, L.; Ren, J.;
Seethala, R.; Cheng, L.; Sleph, P.; Sun, W.; Tieman, A.;
Wetterau, J. R.; Doweyko, A.; Chandrasena, G.; Chang,
S. Y.; Humphreys, W. G.; Sasseville, V. G.; Biller, S. A.;
Ryono, D. E.; Selan, F.; Hariharan, N.; Cheng, P. T. W. J.
Med. Chem. 2005, 48, 2248.
15. Typical procedure for arylsulfamide from arylsulfamoyl
imidazolium triflate and amine: A solution of arylsulfa-
moyl imidazolium triflate 7a (4.95 g, 11 mmol) and amine
1b (3.80 g, 10 mmol) in CH3CN (40 mL) wastsirred
overnight at reflux. The mixture wasconcentrated in
vacuo giving a residue, which was subjected to silica gel
chromatography (Hex/EA = 4:1) affording sulfamide 3b
(4.91 g, 84%) asa white oslid.
1H NMR (500 MHz,
CDCl3): d 1.24 (t, 3H, J = 7.15 Hz), 2.44 (s, 3H), 3.27 (s,
3H), 3.81 (s, 2H), 4.16 (q, 2H, J = 7.15 Hz), 4.42 (s, 2H),
4.98 (s, 2H), 6.95–8.03 (m, 13H). 13C NMR (125 MHz,
CDCl3): d 10.54, 14.15, 38.82, 47.38, 52.00, 61.32, 62.30,
115.05, 126.14, 127.14, 127.34, 127.42, 128.02, 128.72,
129.19, 130.10, 130.15, 132.78, 136.64, 141.23, 147.15,
158.06, 160.06, 169.50. MS m/z 583 (M+, 3), 379 (6), 172
1
(100). Sulfamide 3c: H NMR (500 MHz, CDCl3): d 1.24
(t, 3H, J = 7.15 Hz), 2.24 (s, 3H), 3.28 (s, 3H), 3.85 (s, 2H),
4.16 (q, 2H, J = 7.15 Hz), 4.47 (s, 2H), 4.96 (s, 2H), 6.85–
8.02 (m, 13H). 13C NMR (125 MHz, CDCl3): d 10.53,
14.14, 38.83, 47.60, 52.55, 61.34, 62.21, 114.73, 114.89,
121.31, 126.16, 127.47, 128.00, 128.70.