N. Kojima et al. / Bioorg. Med. Chem. Lett. 16 (2006) 5118–5121
Table 1. Melting temperatures (°C) of crosslinked products
5121
Supplementary data
Con-25
ssN-25
Supplementary data associated with this article can be
AS15rG
AS16rG
66.6 (35.6)a
64.1 (34.5)
64.0 (35.8)
64.0 (37.5)
a Melting temperatures of double-stranded DNAs before crosslinking
reactions are listed in parentheses.
References and notes
reaction by facilitating the hydrophobic interaction of
naphthalene residue with nucleobase at the 30-end of
the oxidized acceptor strand.
1. (a) Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science
2000, 289, 1757; (b) Elghanian, R.; Storhoff, J. J.; Mucic,
R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277,
1078; (c) Pathak, S.; Choi, S. K.; Arnheim, N.; Thompson,
M. E. J. Am. Chem. Soc. 2001, 123, 4103.
Crosslinking products using ssN-25 and Con-25 were
purified by HPLC, and the molecular weights and ther-
mal stabilities were examined (see Supplementary data).
All crosslinked products showed Tm values of about
30 °C higher than those of the double-stranded ODNs
without the covalent linkage (Table 1). The results of
the thermal stabilities and the mass spectroscopic analy-
ses proved the formation of the crosslinked products.
2. Raddatz, S.; Mueller-Ibeler, J.; Kluge, J.; Wass, L.;
Burdinski, G.; Havens, J. R.; Onofrey, T. J.; Wang, D.;
Schweitzer, M. Nucleic Acids Res. 2002, 30, 4793.
3. Koch, T.; Jacobsen, N.; Fensholdt, J.; Boas, U.; Fenger,
M.; Jakobsen, M. H. Bioconjugate Chem. 2000, 11, 474.
4. (a) Rehman, F. N.; Audeh, M.; Abrams, E. S.; Hammond,
P. W.; Kenney, M.; Boles, T. C. Nucleic Acids Res. 1999,
27, 649; (b) Timofeev, E.; Kochetkova, S. V.; Mirzabekov,
A. D.; Florentiev, V. L. Nucleic Acids Res. 1996, 24, 3142.
5. (a) Agrawal, S.; Christodoulou, C.; Gait, M. J. Nucleic
Acids Res. 1986, 14, 6227; (b) Emson, P. C.; Arai, H.;
Agrawal, S.; Christodoulou, C.; Gait, M. J. Methods
Enzymol. 1989, 168, 753; (c) Zatsepin, T. S.; Stetsenko, D.
A.; Gait, M. J.; Oretskaya, T. S. Bioconjugate Chem. 2005,
16, 471.
We showed that the reactivity of the amino group on the
oligonucleotides was increased by the introduction of an
aromatic residue. Especially, it was found that the amino
group close to the aromatic residue could react very effi-
ciently with FITC and aldehyde groups in comparison
with the conventional amino modification. Although
anthracene is thought to be more effective than naphtha-
lene residue in respect of hydrophobicity, anthracene
yields its own fluorescence, and this character is not
appropriate for fluorescence assay using other dyes.
Therefore, ssN, which has a naphthalene residue, can be
a profitable amino-modification for oligonucleotides
and is applicable for various biological studies. For in-
stance, it will be useful for efficient immobilization of
probes onto oligonucleotide array because the ssN-
modified oligonucleotides are thought to react efficiently
with the reactive groups on the array surface. This effect
will improve the sensitivity of the oligonucleotide array.
6. (a) Epstein, J. R.; Lee, M.; Walt, D. R. Anal. Chem. 2002,
74, 1836; (b) Benters, R.; Niemeyer, C. M.; Drutschmann,
D.; Blohm, D.; Wohrle, D. Nucleic Acids Res. 2002, 30,
e10.
7. Ruth, J. L. Methods Mol. Biol. 1994, 26, 167.
8. (a) Ren, R. X. F.; Chaudhuri, N. C.; Paris, P. L.; Rumney,
S., IV; Kool, E. T. J. Am. Chem. Soc. 1996, 118, 7671; (b)
Christensen, U. B.; Pedersen, E. B. Nucleic Acids Res.
2002, 30, 4918; (c) Puri, N.; Zamaratski, E.; Sund, C.;
Chattopadhyaya, J. Tetrahedron 1997, 53, 10409.
9. MALDI-TOF/MS spectra; Con-25: calcd. 7770.39, found
7769.38; PL-25: calcd. 7908.40, found 7908.16; SN-25:
calcd. 7997.49, found 7997.52; SNO-25: calcd. 8027.50,
found 8027.47; ssN-25: calcd. 8027.50, found 8027.69;
LNO-25: calcd. 8131.54, found 8131.90; LAO-25: calcd.
8182.56, found 8182.56.
Acknowledgments
10. Komatsu, Y.; Kojima, N.; Nonaka, K.; Fujinawa, Y.;
Sugino, M.; Mikami, A.; Hashida, J.; Ohtsuka, E.;
Matsubara, K. Nucleic Acids Symp. Ser. 2004, 48, 21.
11. (a) Bellon, L.; Workman, C.; Scherrer, J.; Usman, N.;
Wincott, F. J. Am. Chem. Soc. 1996, 118, 3771; (b) Li, X.;
Zhan, Z. Y.; Knipe, R.; Lynn, D. G. J. Am. Chem. Soc.
2002, 124, 746; (c) Kurtz, A. J.; Dodson, M. L.; Lloyd, R.
S. Biochemistry 2002, 41, 7054; (d) Iwai, S.; Maeda, M.;
Shirai, M.; Shimada, Y.; Osafune, T.; Murata, T.;
Ohtsuka, E. Biochemistry 1995, 34, 4601.
We thank Dr. Lim Chun Ren (DNA Chip Research
Inc.), Dr. Junya Hashida, and Youji Ueda (Hitachi
Software Engineering Co. Ltd.) for their helpful discus-
sions. We also thank Naonori Inoue (Hokkaido Univer-
sity) for technical assistance in MALDI-TOF/MS
measurement. This work was carried out by financial
support from National Institute of Advanced Industrial
Science and Technology (AIST).