dent of the solvent polarity. It strongly suggests that the lowest
excited state of the system is that localized on the spacer. On
the other hand, the solvent dependence in R1 is explained by
the charge transfer character of the ruthenium 3MLCT excited
state, which should be stabilized by more polar solvents. Also
the relatively long emission lifetime in R3 and the qualitatively
different transient absorption spectrum favor a spacer based
excited state. Possibly the relatively fast rate of the forbidden
deactivation in R3, and the significant emission, is due to spin–
orbit coupling with the heavy ruthenium center.
Further support for the p–p* character of the lowest excited
state of R3 was obtained from the 77 K emission spectra (Fig.
3). The trend of the excited state energy for R1–R3 obtained
from the spectral fit to the steady-state emission data shows a
substantial decrease when going form R2 to R3: E00 ¼ 2.04,
2.01 and 1.95 eV in the series R1–R3. The same trend is seen for
Griep-Raming, D. Haase and W. Saak, Angew. Chem., Int. Ed.,
2002, 41, 2086.
N. Martin, L. Sanchez, B. Illescas and I. Perez, Chem. Rev., 1998,
98, 2527.
N. Armaroli, G. Accorsi, D. Felder and J. -F. Nierengarten,
Chem.-Eur. J., 2002, 8, 2314.
(a) D. Armspach, E. C. Constable, F. Diederich, C. E. Housecroft
and J.-F. Nierengarten, Chem.-Eur. J., 1998, 4, 723; (b) M. D.
Meijer, G. P. M. van Klink and G. van Koten, Coord. Chem. Rev.,
2002, 230, 141; (c) D. M. Guldi, M. Maggini, E. Menna, G.
Scorrano, P. Ceroni, M. Marcaccio, F. Paolucci and S. Roffia,
Chem.-Eur. J., 2001, 7, 1597; (d) M. Maggini, D. M. Guldi, S.
Mondini, G. Scorrano, F. Paolucci, P. Ceroni and S. Roffia,
Chem.-Eur. J., 1998, 4, 1992.
6
7
8
9
N. P. Redmore, I. V. Rubtsov and M. J. Therien, J. Am. Chem.
Soc., 2003, 125, 8769.
10 C. Goze, D. V. Kozlov, F. N. Castellano, J. Suffert and R. Ziessel,
Tetrahedron Lett., 2003, 44, 8713.
11 (a) A. Khatyr and R. Ziessel, J. Org. Chem., 2000, 65, 3126; (b) J.
M. Tour, Chem. Rev., 1996, 96, 537; (c) J. M. Tour, Acc. Chem.
Res., 2000, 33, 791.
12 (a) R. Ziessel, Synthesis, 1999, 1839; (b) R. E. Martin and F.
Diederich, Angew. Chem., Int. Ed., 1999, 38, 1351; (c) Y. Liu, S.
Jiang and K. S. Schanze, Chem. Commun., 2003, 650; (d) D.
Holten, D. F. Bocian and J. S. Lindsey, Acc. Chem. Res., 2002,
35, 57.
13 K. A. Walters, K. D. Ley, C. S. Cavalaheiro, S. E. Miller, D.
Gosztola, M. R. Wasielewski, A. P. Bussandri, H. van Willigen
and K. S. Schanze, J. Am. Chem. Soc., 2001, 123, 8329.
14 P. F. H. Schwab, F. Fleischer and J. Michl, J. Org. Chem., 2002,
67, 443.
the Huang–Rhys factors of the medium frequency mode: SM
¼
0.88, 0.76, and 0.66 in the same series. The Huang–Rhys factor
and the band-width (n1/2) for R3 is extremely low if it were to
originate from a ruthenium-to-bipyridine 3MLCT state and
reflects a small nuclear displacement when going from the
ground to the excited state. This is most probable if the excited
state of R3 is actually the p - p* state of the phenylethylene
spacer. Note that the expression for the spectral composition
used is based on a general theory for radiative decay and its use
is not restricted to MLCT emission. As the medium frequency
modes are dominating, these are likely to be similar in fre-
quency for the pyridine and phenyl breathing modes.
15 I. P. Evans, A. Spencer and G. Wilkinson, J. Chem. Soc., Dalton
Trans., 1973, 204.
In conclusion the p–p* state of the spacer is the lowest
excited state of the R3 chromophore. The initial transient
absorption spectrum for D3 is identical to that for the reference
complex R3. This shows that the excited ruthenium MLCT
state rapidly forms the p–p* state of the spacer, which subse-
quently transfers energy to the C60 unit. In D1 and D2 the
corresponding p–p* state is higher in energy but most likely
accessible by thermal population so that energy transfer to the
C60 unit may be facilitated by a hopping mechanism. Our
experiments suggest an interesting alternative for long-range
energy transfer where the excited state is efficiently transferred
via near-isoenergetic bridge states. The intermediate popula-
tion of the bridge states, which decrease in energy as the spacer
length increases, may rationalize the surprisingly constant
energy transfer rates over edge-to-edge distances between 1.1
and 2.3 nm for D1–D3.
16 T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi and
K. Hirotsu, J. Am. Chem. Soc., 1984, 106, 158.
17 L. Hegedus, in Organometallics in Synthesis. A Manual, ed. M.
Schlosser, John Wiley & Sons, Chichester, 1994, ch. 5, p. 448.
18 O. Johansson, M. Borgstrom, R. Lomoth, M. Palmblad, J.
Bergquist, L. Hammarstrom, L. Sun and B. Akermark, Inorg.
¨
Chem., 2003, 42, 2908.
19 M. Andersson, J. Davidsson, L. Hammarstrom, J. Korppi-Tom-
¨
mola and T. Peltola, J. Phys. Chem. B, 1999, 103, 3258.
20 (a) J. M. Tour, A. M. Rawlett, M. Kozaki, Y. Yao, R. C. Jagessar,
S. M. Dirk, D. W. Price, M. A. Reed, C.-W. Zhou, J. Chen, W.
Wang and I. Campbell, Chem.-Eur. J., 2001, 7, 5118; (b) C. A.
Briehn and P. Baeuerle, Chem. Commun., 2002, 1015; (c) T. Gu, D.
Tsamouras, C. Melzer, V. Krasnikov, J.-P. Gisselbrecht, M.
Gross, G. Hadziioannou and J.-F. Nierengarten, Chem. Phys.
Chem., 2002, 3, 124; (d) T. Gu and J. F. Nierengarten, Tetrahedron
Lett., 2001, 42, 3175; (e) J. Zhang, D. J. Pesak, J. L. Ludwick and
J. S. Moore, J. Am. Chem. Soc., 1994, 116, 4227.
21 U. H. F. Bunz, Chem. Rev., 2000, 100, 1605.
22 J. M. Tour, J. S. Schumm and D. L. Pearson, Angew. Chem., Int.
Ed. Engl., 1994, 33, 1360.
23 P. Siemsen, R. C. Livingston and F. Diederich, Angew. Chem., Int.
Ed., 2000, 39, 2632.
24 D. B. Kimball and M. M. Haley, Angew. Chem., Int. Ed., 2002, 41, 3338.
25 M. P. Doyle and W. J. Bryker, J. Org. Chem., 1979, 44, 1572.
26 N. Tagmatarchis and M. Prato, Synlett, 2003, 768.
27 D. Hesek, Y. Inoue, S. R. L. Everitt, H. Ishida, M. Kunieda and
M. G. B. Drew, Inorg. Chem., 2000, 39, 308.
28 D. J. Hurley and Y. Tor, J. Am. Chem. Soc., 2002, 124, 3749.
29 R. Ziessel, V. Grosshenny, M. Hissler and C. Stroh, Inorg. Chem.,
2004, 43, 4262.
Acknowledgements
The authors acknowledge financial support from the French
Ministry of Research with the ACI ‘‘jeunes chercheurs’’ 4057
(salary of FC), the Swedish Foundation for Strategic Research,
The Wallenberg Foundation, The Royal Swedish Academy of
Sciences, The Swedish Research Council and The Swedish
Energy Agency.
30 A. Barbieri, B. Ventura, F. Barigelletti, A. De Nicola, M. Quesada
and R. Ziessel, Inorg. Chem., 2004, 43, 7359.
References
31 T. Hundertmark, A. F. Littke, S. L. Buchwald and G. C. Fu, Org.
Lett., 2000, 2, 1729.
1
V. Balzani and F. Scandola, Supramolecular Photochemistry, Ellis
Horwood, Chichester, U.K., 1991.
32 K. Kalyanasundaram, Photochemistry of Polypyridine and Por-
phyrin Complexes, Academic Press, London, 1992.
2
(a) M. Bixon and J. Jortner, Adv. Chem. Phys., 1999, 106, 35; (b) S.
Encinas, F. Barigelletti, A. M. Barthram, M. D. Ward and S.
Campagna, Chem. Commun., 2001, 277; (c) S.-I. Kawahara, T.
Uchimaru and S. Murata, Chem. Commun., 1999, 563.
(a) E. A. Weiss, M. J. Ahrens, L. E. Sinks, M. A. Ratner and M.
R. Wasielewski, J. Am. Chem. Soc., 2004, 126, 9510; (b) B. P.
Paulson, J. R. Miller, W.-X. Gan and G. Closs, J. Am. Chem. Soc.,
2005, 127, 4860; (c) W. B. Davis, W. A. Svec, M. A. Ratner and M.
R. Wasielewski, Nature, 1998, 396, 60.
P. Wautelet, M. Moroni, L. Oswald, J. Le Moigne, A. Pham, J. Y.
Bigot and S. Luzzati, Macromolecules, 1996, 29, 446.
(a) D. Sun, F. S. Tham, C. A. Reed, L. Chaker and P. D. W. Boyd,
J. Am. Chem. Soc., 2002, 124, 6604; (b) A. Lutzen, M. Hapke, J.
33 (a) U. W. Grummt, T. Pautzsch, E. Birckner, H. Sauerbrey, A. Utterodt,
U. Neugebauer and E. Klemm, J. Phys. Org. Chem., 2004, 17, 199; (b) T.
Pautzsch and E. Klemm, Macromolecules, 2002, 35, 1569.
34 D. M. Guldi and M. Prato, Acc. Chem. Res., 2000, 33, 695.
35 (a) M. Hissler, A. Harriman, A. Khatyr and R. Ziessel, Chem.-
Eur. J., 1999, 5, 3366; (b) K. R. J. Thomas, J. T. Lin, H.-M. Lin,
C.-P. Chang and C.-H. Chuen, Organometallics, 2001, 20, 557.
36 (a) J. V. Caspar and T. J. Meyer, Inorg. Chem., 1983, 22, 2444; (b)
J. A. Treadway, B. Loeb, R. Lopez, P. A. Anderson, F. R. Keene
and T. J. Meyer, Inorg. Chem., 1996, 35, 2242; (c) L. Hammar-
3
4
5
strom, F. Barigelletti, L. Flamigni, M. T. Indelli, N. Armaroli,
¨
N e w J . C h e m . , 2 0 0 5 , 2 9 , 1 2 7 2 – 1 2 8 4
1283